Given an integer N, the task is to check if its equivalent binary number has an equal frequency of consecutive blocks of 0 and 1. Note that 0 and a number with all 1s are not considered to have a number of blocks of 0s and 1s.
Examples:
Input: N = 5
Output: Yes
Equivalent binary number of 5 is 101.
The first block is of 1 with length 1, the second block is of 0 with length 1
and the third block is of 1 is also of length 1. So, all blocks of 0 and 1 have an equal frequency which is 1.Input: N = 51
Output: Yes
Equivalent binary number of 51 is 110011.Input: 8
Output: NoInput: 7
Output: No
Simple Approach: First convert the integer to its equivalent binary number. Traverse binary string from left to right, for each block of 1 or 0, find its length and add it in a set. If length of set is 1, print “Yes” else print “No”.
C++
// C++ implementation of the above // approach #include <bits/stdc++.h> using namespace std; // Function to check void hasEqualBlockFrequency( int N) { // Converting integer to its equivalent // binary number string S = bitset<3> (N).to_string(); set< int > p; int c = 1; for ( int i = 0; i < S.length(); i++) { // If adjacent character are same // then increase counter if (S[i] == S[i + 1]) c += 1; else { p.insert(c); c = 1; } p.insert(c); } if (p.size() == 1) cout << "Yes" << endl; else cout << "No" << endl; } // Driver code int main() { int N = 5; hasEqualBlockFrequency(N); return 0; } // This code is contributed by divyesh072019 |
Java
// Java implementation of the above // approach import java.util.*; class GFG{ // Function to check static void hasEqualBlockFrequency( int N) { // Converting integer to its equivalent // binary number String S = Integer.toString(N, 2 ); HashSet<Integer> p = new HashSet<Integer>(); int c = 1 ; for ( int i = 0 ; i < S.length() - 1 ; i++) { // If adjacent character are same // then increase counter if (S.charAt(i) == S.charAt(i + 1 )) c += 1 ; else { p.add(c); c = 1 ; } p.add(c); } if (p.size() == 1 ) System.out.println( "Yes" ); else System.out.println( "No" ); } // Driver Code public static void main(String []args) { int N = 5 ; hasEqualBlockFrequency(N); } } // This code is contributed by rutvik_56 |
Python3
# Python3 implementation of the above # approach # Function to check def hasEqualBlockFrequency(N): # Converting integer to its equivalent # binary number S = bin (N).replace( "0b" , "") p = set () c = 1 for i in range ( len (S) - 1 ): # If adjacent character are same # then increase counter if (S[i] = = S[i + 1 ]): c + = 1 else : p.add(c) c = 1 p.add(c) if ( len (p) = = 1 ): print ( "Yes" ) else : print ( "No" ) # Driver code N = 5 hasEqualBlockFrequency(N) |
C#
// C# implementation of the above // approach using System; using System.Collections.Generic; class GFG{ // Function to check static void hasEqualBlockFrequency( int N) { // Converting integer to its equivalent // binary number string S = Convert.ToString(N, 2); HashSet< int > p = new HashSet< int >(); int c = 1; for ( int i = 0; i < S.Length - 1; i++) { // If adjacent character are same // then increase counter if (S[i] == S[i + 1]) c += 1; else { p.Add(c); c = 1; } p.Add(c); } if (p.Count == 1) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } // Driver Code static void Main() { int N = 5; hasEqualBlockFrequency(N); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // JavaScript implementation of the above approach // Function to check function hasEqualBlockFrequency(N) { // Converting integer to its equivalent // binary number let S = N.toString(2); let p = new Set(); let c = 1; for (let i = 0; i < S.length - 1; i++) { // If adjacent character are same // then increase counter if (S[i] == S[i + 1]) c += 1; else { p.add(c); c = 1; } p.add(c); } if (p.size == 1) document.write( "Yes" ); else document.write( "No" ); } let N = 5; hasEqualBlockFrequency(N); </script> |
Yes
Optimized Solution: We traverse from last bit. We first count number of same bits in the last block. We then traverse through all bits, for every block, we count number of same bits and if this count is not same as first count, we return false. If all blocks have same count, we return true.
C++
// C++ program to check if a number has // same counts of 0s and 1s in every // block. #include <iostream> using namespace std; // function to convert decimal to binary bool isEqualBlock( int n) { // Count same bits in last block int first_bit = n % 2; int first_count = 1; n = n / 2; while (n % 2 == first_bit && n > 0) { n = n / 2; first_count++; } // If n is 0 or it has all 1s, // then it is not considered to // have equal number of 0s and // 1s in blocks. if (n == 0) return false ; // Count same bits in all remaining blocks. while (n > 0) { int first_bit = n % 2; int curr_count = 1; n = n / 2; while (n % 2 == first_bit) { n = n / 2; curr_count++; } if (curr_count != first_count) return false ; } return true ; } // Driver program to test above function int main() { int n = 51; if (isEqualBlock(n)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java program to check if a number has // same counts of 0s and 1s in every // block. import java.io.*; class GFG { // function to convert decimal to binary static boolean isEqualBlock( int n) { // Count same bits in last block int first_bit = n % 2 ; int first_count = 1 ; n = n / 2 ; while (n % 2 == first_bit && n > 0 ) { n = n / 2 ; first_count++; } // If n is 0 or it has all 1s, // then it is not considered to // have equal number of 0s and // 1s in blocks. if (n == 0 ) return false ; // Count same bits in all remaining blocks. while (n > 0 ) { first_bit = n % 2 ; int curr_count = 1 ; n = n / 2 ; while (n % 2 == first_bit) { n = n / 2 ; curr_count++; } if (curr_count != first_count) return false ; } return true ; } // Driver code public static void main (String[] args) { int n = 51 ; if (isEqualBlock(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by inder_mca |
Python3
# Python3 program to check if a number has # same counts of 0s and 1s in every block. # Function to convert decimal to binary def isEqualBlock(n): # Count same bits in last block first_bit = n % 2 first_count = 1 n = n / / 2 while n % 2 = = first_bit and n > 0 : n = n / / 2 first_count + = 1 # If n is 0 or it has all 1s, # then it is not considered to # have equal number of 0s and # 1s in blocks. if n = = 0 : return False # Count same bits in all remaining blocks. while n > 0 : first_bit = n % 2 curr_count = 1 n = n / / 2 while n % 2 = = first_bit: n = n / / 2 curr_count + = 1 if curr_count ! = first_count: return False return True # Driver Code if __name__ = = "__main__" : n = 51 if isEqualBlock(n): print ( "Yes" ) else : print ( "No" ) # This code is contributed by # Rituraj Jain |
C#
// C# program to check if a number has // same counts of 0s and 1s in every // block. using System; class GFG { // function to convert decimal to binary static bool isEqualBlock( int n) { // Count same bits in last block int first_bit = n % 2; int first_count = 1; n = n / 2; while (n % 2 == first_bit && n > 0) { n = n / 2; first_count++; } // If n is 0 or it has all 1s, // then it is not considered to // have equal number of 0s and // 1s in blocks. if (n == 0) return false ; // Count same bits in all remaining blocks. while (n > 0) { first_bit = n % 2; int curr_count = 1; n = n / 2; while (n % 2 == first_bit) { n = n / 2; curr_count++; } if (curr_count != first_count) return false ; } return true ; } // Driver code public static void Main () { int n = 51; if (isEqualBlock(n)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by Ryuga |
PHP
<?php // PHP program to check if a number has // same counts of 0s and 1s in every // block. // function to convert decimal to binary function isEqualBlock( $n ) { // Count same bits in last block $first_bit = $n % 2; $first_count = 1; $n = (int)( $n / 2); while ( $n % 2 == $first_bit && $n > 0) { $n = (int)( $n / 2); $first_count ++; } // If n is 0 or it has all 1s, then // it is not considered to have equal // number of 0s and 1s in blocks. if ( $n == 0) return false; // Count same bits in all remaining blocks. while ( $n > 0) { $first_bit = $n % 2; $curr_count = 1; $n = (int)( $n / 2); while ( $n % 2 == $first_bit ) { $n = (int)( $n / 2); $curr_count ++; } if ( $curr_count != $first_count ) return false; } return true; } // Driver Code $n = 51; if (isEqualBlock( $n )) echo "Yes" ; else echo "No" ; // This code is contributed by // Shivi_Aggarwal ?> |
Javascript
<script> // javascript program to check if a number has // same counts of 0s and 1s in every // block. // function to convert decimal to binary function isEqualBlock(n) { // Count same bits in last block var first_bit = n % 2; var first_count = 1; n = n / 2; while (n % 2 == first_bit && n > 0) { n = n / 2; first_count++; } // If n is 0 or it has all 1s, // then it is not considered to // have equal number of 0s and // 1s in blocks. if (n == 0) return false ; // Count same bits in all remaining blocks. while (n > 0) { first_bit = n % 2; var curr_count = 1; n = n / 2; while (n % 2 == first_bit) { n = n / 2; curr_count++; } if (curr_count != first_count) return false ; } return true ; } // Driver code var n = 51; if (isEqualBlock(n)) document.write( "Yes" ); else document.write( "No" ); // This code contributed by shikhasingrajput </script> |
Yes
Time complexity: O(log(n))
Auxiliary space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!