Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if sum of Subarray of a 2D Array is in Increasing...

Check if sum of Subarray of a 2D Array is in Increasing order

Given a 2d Array arr[][], the task is to check if the sum of the subarrays is in increasing order or not. If yes return “true” otherwise return “false”.

Examples: 

Input: arr[][] = {{1, 2}, {2, 4}, {4, 5}, {6, 4}};
Output: true
Explanation: 1st subarray sum is 1 + 2 = 3.
2nd subarray sum is 2 + 4 = 6.
3rd subarray sum is 4 + 5 = 9.
4th subarray sum is 6 + 4 = 10.
Because, 3 < 6 < 9 < 10 therefore, sum of subarrays is in increasing order, and that’s why 
output is true.            

Input: arr[][] = {{6, 2}, {3, 9}, {5, 6}, {7, 1}};
Output: false 

Approach: To solve the problem follow the below idea:

We can do this by looping through each subarray, calculating its sum, and comparing it with the sum of the previous subarray.

  • If the sum of the current subarray is less than or equal to the sum of the previous subarray, we return false.
  • If all subarrays have an increasing sum, we return true.

Follow the steps to solve the problem:

  • Define a function “checkIncreasingSum” that takes a 2D vector “arr” as input and returns a boolean value.
  • Initialize a variable “prevSum” to 0.
  • Loop through each subarray in “arr”:
    • Initialize a variable “curSum” to 0.
    • Loop through each element in the current subarray and add it to “curSum”.
    • If “curSum” is less than or equal to “prevSum”, return “false”.
    • Set “prevSum” to “curSum”.
  • If all subarrays have an increasing sum, return “true”.

Below is the implementation of the above approach:

C++




// C++ code to implement above approach
#include <iostream>
#include <vector>
 
using namespace std;
 
// Function to check if the sum of each
// subarray is in increasing order
bool checkIncreasingSum(vector<vector<int> >& arr)
{
    int prevSum = 0;
 
    // Initializing the previous sum to 0
    for (int i = 0; i < arr.size(); i++) {
 
        // Loop through each subarray
        int curSum = 0;
 
        // Initializing the current
        // sum to 0
        for (int j = 0; j < arr[i].size(); j++) {
 
            // Loop through each element
            // in the subarray
            curSum += arr[i][j];
 
            // Adding the current element
            // to the current sum
        }
        if (curSum <= prevSum) {
            // If the current sum is less
            // than or equal to the
            // previous sum, return false
            return false;
        }
        prevSum = curSum;
 
        // Update the previous sum to be
        // the current sum
    }
    return true;
 
    // If all subarrays have an increasing
    // sum, return true
}
 
// Driver's code
int main()
{
    vector<vector<int> > arr
        = { { 1, 2 }, { 2, 4 }, { 4, 5 }, { 6, 4 } };
 
    // Initializing a 2D vector
    // with some values
    bool res = checkIncreasingSum(arr);
 
    // Calling the checkIncreasingSum
    // function on the input vector
    if (res) {
        cout << "true";
 
        // If the returned value is true,
        // print "true"
    }
    else {
        cout << "false";
 
        // If the returned value is false,
        // print "false"
    }
    return 0;
}


Java




// Java code to implement the approach
import java.util.ArrayList;
 
public class Main {
    public static boolean
    checkIncreasingSum(ArrayList<ArrayList<Integer> > arr)
    {
        int prevSum = 0;
        // Initializing the previous sum to 0
        for (int i = 0; i < arr.size(); i++) {
            // Loop through each subarray
            int curSum = 0;
            // Initializing the current sum to 0
            for (int j = 0; j < arr.get(i).size(); j++) {
                // Loop through each element in the subarray
                curSum += arr.get(i).get(j);
                // Adding the current element to the current
                // sum
            }
            if (curSum <= prevSum) {
                // If the current sum is less than or equal
                // to the previous sum, return false
                return false;
            }
            prevSum = curSum;
            // Update the previous sum to be the current sum
        }
        return true;
        // If all subarrays have an increasing sum, return
        // true
    }
 
    // Driver's code
    public static void main(String[] args)
    {
        ArrayList<ArrayList<Integer> > arr
            = new ArrayList<>();
        arr.add(new ArrayList<Integer>() {
            {
                add(1);
                add(2);
            }
        });
        arr.add(new ArrayList<Integer>() {
            {
                add(2);
                add(4);
            }
        });
        arr.add(new ArrayList<Integer>() {
            {
                add(4);
                add(5);
            }
        });
        arr.add(new ArrayList<Integer>() {
            {
                add(6);
                add(4);
            }
        });
 
        boolean res = checkIncreasingSum(arr);
        if (res) {
            System.out.println("true");
        }
        else {
            System.out.println("false");
        }
    }
}


Python3




# Function to check if the sum of each
# subarray is in increasing order
def checkIncreasingSum(arr):
    prevSum = 0
 
    # Initializing the previous sum to 0
    for i in range(len(arr)):
        # Loop through each subarray
        curSum = 0
 
        # Initializing the current sum to 0
        for j in range(len(arr[i])):
            # Loop through each element in the subarray
            curSum += arr[i][j]
 
            # Adding the current element to the current sum
 
        if curSum <= prevSum:
            # If the current sum is less
            # than or equal to the previous sum, return false
            return False
 
        prevSum = curSum
 
        # Update the previous sum to be
        # the current sum
 
    return True
 
    # If all subarrays have an increasing
    # sum, return true
 
 
# Driver's code
arr = [[1, 2], [2, 4], [4, 5], [6, 4]]
 
# Initializing a 2D list with some values
res = checkIncreasingSum(arr)
 
# Calling the checkIncreasingSum
# function on the input list
if res:
    print("true")
    # If the returned value is true, print "true"
else:
    print("false")
    # If the returned value is false, print "false"


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class MainClass {
    public static bool
    CheckIncreasingSum(List<List<int> > arr)
    {
        int prevSum = 0;
        foreach(List<int> subarr in arr)
        {
            int curSum = 0;
            foreach(int num in subarr) { curSum += num; }
            if (curSum <= prevSum) {
                return false;
            }
            prevSum = curSum;
        }
        return true;
    }
 
    // Driver's code
    public static void Main()
    {
        List<List<int> > arr = new List<List<int> >{
            new List<int>{ 1, 2 }, new List<int>{ 2, 4 },
            new List<int>{ 4, 5 }, new List<int>{ 6, 4 }
        };
        bool res = CheckIncreasingSum(arr);
        if (res) {
            Console.WriteLine("true");
        }
        else {
            Console.WriteLine("false");
        }
    }
}


Javascript




function checkIncreasingSum(arr) {
    let prevSum = 0; // Initializing the previous sum to 0
    for (let i = 0; i < arr.length; i++) { // Loop through each subarray
        let curSum = 0; // Initializing the current sum to 0
        for (let j = 0; j < arr[i].length; j++) { // Loop through each element in the subarray
            curSum += arr[i][j]; // Adding the current element to the current sum
        }
        if (curSum <= prevSum) { // If the current sum is less than or equal to the previous sum, return false
            return false;
        }
        prevSum = curSum; // Update the previous sum to be the current sum
    }
    return true; // If all subarrays have an increasing sum, return true
}
 
let arr = [[1, 2], [2, 4], [4, 5], [6, 4]];
let res = checkIncreasingSum(arr);
if (res) {
    console.log("true");
} else {
    console.log("false");
}


Output

true

Time complexity: O(N*M), where N is the number of subarrays and M is the number of elements in each subarray. This is because we loop through each subarray and each element in the subarray once.
Auxiliary Space: O(1) because we only use a constant amount of extra space to store the previous sum and the current sum. The space used by the input arr is not counted because it is part of the input.

2) Here is another approach for above problem:

In the above approach it uses nested loop which increases time and space complexity but in this approach, we can use single loop which will decrease the time complexity.

The approach includes following steps:

  • We first initialize the variable to the sum of the first subarray. 
  • Then, we loop through the rest of the subarrays and calculate the sum of each subarray using the “sum” function. 
  • If the sum of the current subarray is less than or equal to the sum of the previous subarray, we return False. Otherwise, we update the “prevSum” variable to the current sum and continue looping. 
  • If we have looped through all subarrays without finding any that violate the increasing sum property, we return True. 

C++




#include <iostream>
#include <numeric>  // include the <numeric> header for the accumulate function
#include <vector>
 
using namespace std;
 
bool checkIncreasingSum(vector<vector<int>> arr) {
    int n = arr.size();                 // get the number of subarrays in "arr"
    int prevSum = accumulate(arr[0].begin(), arr[0].end(), 0);  // initialize "prevSum" to the sum of the first subarray
     
    for (int i = 1; i < n; i++) {       // loop through the rest of the subarrays
        int curSum = accumulate(arr[i].begin(), arr[i].end(), 0);  // calculate the sum of the current subarray
        if (curSum <= prevSum) {        // if the current sum is less than or equal to the previous sum,
            return false;               //   return false (the sums are not increasing)
        }
        prevSum = curSum;               // update "prevSum" to the current sum
    }
     
    return true;                        // if we have looped through all subarrays without finding any violations, return true
}
 
int main() {
    vector<vector<int>> arr = {{1, 2}, {2, 4}, {4, 5}, {6, 4}};
    bool res = checkIncreasingSum(arr);
     
    // Calling the checkIncreasingSum
    // function on the input list
    if (res) {
        cout << "true" << endl;         // If the returned value is true, print "true"
    } else {
        cout << "false" << endl;        // If the returned value is false, print "false"
    }
     
    return 0;
}
// This code is contributed by rudra1807raj


Java




import java.util.ArrayList;
import java.util.List;
 
public class Main {
     
    // Function to check if the sums of subarrays in a list of lists are increasing
    public static boolean checkIncreasingSum(List<List<Integer>> arr) {
        int n = arr.size();                       // Get the number of subarrays in "arr"
        int prevSum = sumList(arr.get(0));        // Initialize "prevSum" to the sum of the first subarray
         
        for (int i = 1; i < n; i++) {             // Loop through the rest of the subarrays
            int curSum = sumList(arr.get(i));     // Calculate the sum of the current subarray
            if (curSum <= prevSum) {              // If the current sum is less than or equal to the previous sum,
                return false;                     // return false (the sums are not increasing)
            }
            prevSum = curSum;                     // Update "prevSum" to the current sum
        }
         
        return true;                              // If we have looped through all subarrays without finding any violations, return true
    }
     
    // Helper function to calculate the sum of a list of integers
    public static int sumList(List<Integer> list) {
        int sum = 0;
        for (int num : list) {
            sum += num;
        }
        return sum;
    }
 
    public static void main(String[] args) {
        List<List<Integer>> arr = new ArrayList<>();
        arr.add(new ArrayList<>(List.of(1, 2)));
        arr.add(new ArrayList<>(List.of(2, 4)));
        arr.add(new ArrayList<>(List.of(4, 5)));
        arr.add(new ArrayList<>(List.of(6, 4)));
 
        boolean res = checkIncreasingSum(arr);
 
        // Calling the checkIncreasingSum function on the input list
        if (res) {
            System.out.println("true");     // If the returned value is true, print "true"
        } else {
            System.out.println("false");    // If the returned value is false, print "false"
        }
    }
}


Python3




def checkIncreasingSum(arr):
    n = len(arr)                    # get the number of subarrays in "arr"
    prevSum = sum(arr[0])           # initialize "prevSum" to the sum of the first subarray
     
    for i in range(1, n):           # loop through the rest of the subarrays
        curSum = sum(arr[i])        # calculate the sum of the current subarray
        if curSum <= prevSum:       # if the current sum is less than or equal to the previous sum,
            return False            #   return False (the sums are not increasing)
        prevSum = curSum            # update "prevSum" to the current sum
         
    return True                     # if we have looped through all subarrays without finding any violations, return True
  
arr = [[1, 2], [2, 4], [4, 5], [6, 4]]
res = checkIncreasingSum(arr)
  
# Calling the checkIncreasingSum
# function on the input list
if res:
    print("true")
    # If the returned value is true, print "true"
else:
    print("false")
    # If the returned value is false, print "false"
     
#This code is contributed by Siddharth Aher


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
  static bool CheckIncreasingSum(List<List<int>> arr)
  {
    int n = arr.Count;  // get the number of subarrays in "arr"
    int prevSum = arr[0].Sum();  // initialize "prevSum" to the sum of the first subarray
 
    for (int i = 1; i < n; i++)  // loop through the rest of the subarrays
    {
      int curSum = arr[i].Sum();  // calculate the sum of the current subarray
      if (curSum <= prevSum)  // if the current sum is less than or equal to the previous sum,
      {
        return false// return false (the sums are not increasing)
      }
      prevSum = curSum;  // update "prevSum" to the current sum
    }
 
    return true// if we have looped through all subarrays without finding any violations, return true
  }
 
  static void Main()
  {
    List<List<int>> arr = new List<List<int>> { new List<int> {1, 2}, new List<int> {2, 4}, new List<int> {4, 5}, new List<int> {6, 4} };
    bool res = CheckIncreasingSum(arr);
 
    // Calling the CheckIncreasingSum function on the input list
    if (res)
    {
      Console.WriteLine("true");  // If the returned value is true, print "true"
    }
    else
    {
      Console.WriteLine("false");  // If the returned value is false, print "false"
    }
  }
}
 
// This code is contributed by rudra1807raj


Javascript




function checkIncreasingSum(arr) {
    let n = arr.length;                     // get the number of subarrays in "arr"
    let prevSum = arr[0].reduce((a, b) => a + b); // initialize "prevSum" to the sum of the first subarray
     
    for (let i = 1; i < n; i++) {           // loop through the rest of the subarrays
        let curSum = arr[i].reduce((a, b) => a + b); // calculate the sum of the current subarray
        if (curSum <= prevSum) {            // if the current sum is less than or equal to the previous sum,
            return false;                  //   return False (the sums are not increasing)
        }
        prevSum = curSum;                   // update "prevSum" to the current sum
    }
     
    return true;                            // if we have looped through all subarrays without finding any violations, return True
}
 
let arr = [[1, 2], [2, 4], [4, 5], [6, 4]];
let res = checkIncreasingSum(arr);
 
// Calling the checkIncreasingSum
// function on the input list
if (res) {
    console.log("true");
    // If the returned value is true, print "true"
} else {
    console.log("false");
    // If the returned value is false, print "false"
}


Output

true

Time Complexity: The time complexity of the “checkIncreasingSum” function using the single loop approach is O(n), where n is the number of subarrays in the input “arr”. This is because we are iterating over each subarray once and performing a constant amount of work for each subarray.

Auxiliary Space: The auxiliary space complexity of the above code is O(1), because the code only uses a constant amount of additional memory space to store the variables used within the function. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
17 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments