Given a string str representing an integer and an integer led which is the count of LEDs available. The task is to check if it is possible to display the number using the given LEDs.
Note that a digit will be displayed as it is displayed on a 7 segment LED. If its possible to display the number then print Yes, otherwise print No.
Here’s an example of seven segment display:
Examples:
Input: str = “999”, led = 5
Output: NO
9 takes 6 LEDs to be displayed. So 999 will require 18 LEDs
Since only 5 LEDs are available, it is not possible to display 999Input: str = “123456789”, led = 43
Output: YESInput: str = “123456789”, led = 20
Output: NO
Approach: Pre-compute the number of segments used by digits from 0 to 9 and store it. Now for each element of the string count the number of segments used by it. Now, if count ? led then print YES else print NO.
The number of segment used by digit:
0 -> 6
1 -> 2
2 -> 5
3 -> 5
4 -> 4
5 -> 5
6 -> 6
7 -> 3
8 -> 7
9 -> 6
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Pre-computed values of segment used by digit 0 to 9. const int seg[10] = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 }; // Check if it is possible to display the number string LedRequired(string s, int led) { int count = 0; // Finding sum of the segments used by // each digit of the number for ( int i = 0; i < s.length(); ++i) { count += seg[ int (s[i]) - 48]; } if (count <= led) return "YES" ; else return "NO" ; } // Driven Program int main() { string S = "123456789" ; int led = 20; // Function call to print required answer cout << LedRequired(S, led) << endl; return 0; } |
Java
// Java implementation of the above approach public class GfG{ // Check if it is possible to display the number public static String LedRequired(String s, int led) { // Pre-computed values of segment used by digit 0 to 9. int seg[] = { 6 , 2 , 5 , 5 , 4 , 5 , 6 , 3 , 7 , 6 }; int count = 0 ; // Finding sum of the segments used by // each digit of the number for ( int i = 0 ; i < s.length(); ++i) { count += seg[( int )(s.charAt(i)) - 48 ]; } if (count <= led) return "YES" ; else return "NO" ; } public static void main(String []args){ String S = "123456789" ; int led = 20 ; // Function call to print required answer System.out.println(LedRequired(S, led)); } } // This code is contributed by Rituraj Jain |
Python3
# Python3 implementation of above approach # Pre-computed values of segment # used by digit 0 to 9. seg = [ 6 , 2 , 5 , 5 , 4 , 5 , 6 , 3 , 7 , 6 ] # Check if it is possible to # display the number def LedRequired(s, led) : count = 0 # Finding sum of the segments used # by each digit of the number for i in range ( len (s)) : count + = seg[ ord (s[i]) - 48 ] if (count < = led) : return "YES" else : return "NO" # Driver Code if __name__ = = "__main__" : S = "123456789" led = 20 # Function call to print # required answer print (LedRequired(S, led)) # This code is contributed by Ryuga |
C#
// C# implementation of the above approach using System; class GFG { // Check if it is possible to display the number public static String LedRequired( string s, int led) { // Pre-computed values of segment // used by digit 0 to 9. int [] seg = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 }; int count = 0; // Finding sum of the segments used by // each digit of the number for ( int i = 0; i < s.Length; ++i) { count += seg[( int )(s[i]) - 48]; } if (count <= led) return "YES" ; else return "NO" ; } // Driver Code public static void Main() { string S = "123456789" ; int led = 20; // Function call to print required answer Console.WriteLine(LedRequired(S, led)); } } // This code is contributed by Akanksha Rai |
PHP
<?php // PHP implementation of above approach // Pre-computed values of segment // used by digit 0 to 9. $seg = array (6, 2, 5, 5, 4, 5, 6, 3, 7, 6 ); // Check if it is possible to display the number function LedRequired( $s , $led ) { $count = 0; global $seg ; // Finding sum of the segments used by // each digit of the number for ( $i = 0; $i < strlen ( $s ) ; ++ $i ) { $count += $seg [ord( $s [ $i ]) - 48]; } if ( $count <= $led ) return "YES" ; else return "NO" ; } // Driver Code $S = "123456789" ; $led = 20; // Function call to print required answer echo LedRequired( $S , $led ); // This code is contributed by ihritik ?> |
Javascript
<script> // Javascript implementation of above approach // Pre-computed values of segment used by digit 0 to 9. const seg = [ 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 ]; // Check if it is possible to display the number function LedRequired(s, led) { var count = 0; // Finding sum of the segments used by // each digit of the number for ( var i = 0; i < s.length; ++i) { count += seg[(s[i]) - 48]; } if (count <= led) return "YES" ; else return "NO" ; } var S = "123456789" ; var led = 20; // Function call to print required answer document.write( LedRequired(S, led) + "<br>" ); // This code is contributed by SoumikMondal </script> |
NO
Complexity Analysis:
- Time Complexity: O(n), where n is the size of the given string
- Auxiliary Space: O(1), as extra space of size 10 is used to create an array
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!