Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if N indices of given Array can be colored by M...

Check if N indices of given Array can be colored by M colors using one color at most K times

Find an arrangement of M colors for N indices such that no two adjacent indices have same color and each color can be used at most K times. If no such arrangement exists, output -1.

Examples:

Input: N = 6, M = 4, K = 2
Output: 1 2 3 4 1 2 
Explanation: Color 1 is assigned to the 1-st index. 
Color 2 is assigned to the 2-nd index, color 3 to the 3-rd index, 
color 4 to the 4-th index. 
Again, color 1 is assigned to 5-th index and color 2 to 6-th index.

Input: N = 20, M = 6, K = 3
Output: -1
Explanation: No such arrangement exists in which 6 colors may be assigned to at most 3 indices.

 

Approach: Observe the following points:

  • If the number of colors is only 1 and the number of indices is greater than 1, then no such assignment can exist.
  • If the total number of indices is greater than what can be colored by the colors available (M*K), then no such assignment exists.

Follow the steps below to solve the above problem:

  • If the number of colors is 1 and the number of indices is greater than 1, then output -1.
  • If the total number of colors is greater than what can be colored by the available colors (M*K), then output -1.
  • If both of the above conditions do not meet, then:
    • Initialize variable x with 1.
    • Run a loop till N and within the loop, output x. Increment x and check if x is greater than M. If x becomes greater than M, set x = 1.
    • When x is set to 1, the loop again starts printing the number of colors from 1.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to find the required
// arrangement of colors to indices
void findAssignment(int N, int M, int K)
{
    // If number of colors is 1
    // and number of indices is more than 1
    if (M == 1 && N > 1) {
 
        // Output -1
        cout << -1;
    }
 
    // If number of indices is more than
    // what can be colored
    // by the available colors
    else if (N > M * K) {
 
        // Output -1
        cout << -1;
    }
    else {
 
        // Initialize x with 1
        int x = 1;
 
        // Loop to print
        // the required arrangement
        for (int i = 0; i < N; ++i) {
 
            // Output the number of colors
            cout << x << " ";
 
            // Increment the number of colors
            x++;
 
            // If x exceeds the total number
            // of available colors
            if (x > M) {
 
                // Set x to 1
                x = 1;
            }
        }
    }
}
 
// Driver Code
int main()
{
    // Given input
    int N = 6, M = 4, K = 2;
 
    // Function Call
    findAssignment(N, M, K);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to find the required
  // arrangement of colors to indices
  static void findAssignment(int N, int M, int K)
  {
 
    // If number of colors is 1
    // and number of indices is more than 1
    if (M == 1 && N > 1) {
 
      // Output -1
      System.out.print("-1");
    }
 
    // If number of indices is more than
    // what can be colored
    // by the available colors
    else if (N > M * K) {
 
      // Output -1
      System.out.print("-1");
    }
    else {
 
      // Initialize x with 1
      int x = 1;
 
      // Loop to print
      // the required arrangement
      for (int i = 0; i < N; ++i) {
 
        // Output the number of colors
        System.out.print(x + " ");
 
        // Increment the number of colors
        x++;
 
        // If x exceeds the total number
        // of available colors
        if (x > M) {
 
          // Set x to 1
          x = 1;
        }
      }
    }
  }
 
  // Driver Code
  public static void main (String[] args)
  {
 
    // Given input
    int N = 6, M = 4, K = 2;
 
    // Function Call
    findAssignment(N, M, K);
  }
}
 
// This code is contributed by hrithikgarg03188


Python3




# Python code for the above approach
 
# Function to find the required
# arrangement of colors to indices
def findAssignment(N, M, K):
 
    # If number of colors is 1
    # and number of indices is more than 1
    if (M == 1 and N > 1):
 
        # Output -1
        print(-1)
     
    # If number of indices is more than
    # what can be colored
    # by the available colors
    elif (N > M * K) :
 
        # Output -1
        print(-1)
     
    else:
 
        # Initialize x with 1
        x = 1;
 
        # Loop to print
        # the required arrangement
        for i in range(N):
 
            # Output the number of colors
            print(x, end= " ");
 
            # Increment the number of colors
            x += 1
 
            # If x exceeds the total number
            # of available colors
            if (x > M):
 
                # Set x to 1
                x = 1;
 
# Driver Code
 
# Given input
N = 6
M = 4
K = 2
 
# Function Call
findAssignment(N, M, K);
 
# This code is contributed by gfgking


C#




// C# program for the above approach
using System;
class GFG
{
   
// Function to find the required
// arrangement of colors to indices
static void findAssignment(int N, int M, int K)
{
   
    // If number of colors is 1
    // and number of indices is more than 1
    if (M == 1 && N > 1) {
 
        // Output -1
        Console.Write(-1);
    }
 
    // If number of indices is more than
    // what can be colored
    // by the available colors
    else if (N > M * K) {
 
        // Output -1
        Console.Write(-1);
    }
    else {
 
        // Initialize x with 1
        int x = 1;
 
        // Loop to print
        // the required arrangement
        for (int i = 0; i < N; ++i) {
 
            // Output the number of colors
            Console.Write(x + " ");
 
            // Increment the number of colors
            x++;
 
            // If x exceeds the total number
            // of available colors
            if (x > M) {
 
                // Set x to 1
                x = 1;
            }
        }
    }
}
 
// Driver Code
public static void Main()
{
   
    // Given input
    int N = 6, M = 4, K = 2;
 
    // Function Call
    findAssignment(N, M, K);
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the required
       // arrangement of colors to indices
       function findAssignment(N, M, K)
       {
        
           // If number of colors is 1
           // and number of indices is more than 1
           if (M == 1 && N > 1) {
 
               // Output -1
               document.write(-1)
           }
 
           // If number of indices is more than
           // what can be colored
           // by the available colors
           else if (N > M * K) {
 
               // Output -1
               document.write(-1)
           }
           else {
 
               // Initialize x with 1
               let x = 1;
 
               // Loop to print
               // the required arrangement
               for (let i = 0; i < N; ++i) {
 
                   // Output the number of colors
                   document.write(x + " ");
 
                   // Increment the number of colors
                   x++;
 
                   // If x exceeds the total number
                   // of available colors
                   if (x > M) {
 
                       // Set x to 1
                       x = 1;
                   }
               }
           }
       }
 
       // Driver Code
 
       // Given input
       let N = 6, M = 4, K = 2;
 
       // Function Call
       findAssignment(N, M, K);
 
        // This code is contributed by Potta Lokesh
   </script>


 
 

Output

1 2 3 4 1 2 

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
01 Feb, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments