Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AICheck if matrix A can be converted to B by changing parity...

Check if matrix A can be converted to B by changing parity of corner elements of any submatrix

Given two binary matrices, A[][] and B[][] of N×M. In a single operation, one can choose a sub-matrix (min of 2 rows and 2c columns) and change the parity of the corner elements i.e. 1 can be changed to a 0, and 0 can be changed to a 1. The task is to check if matrix A can be converted to B using any number of operations.

Examples:  

Input: A[][] = {{0, 1, 0}, {0, 1, 0}, {1, 0, 0}}, 
B[][] = {{1, 0, 0}, {1, 0, 0}, {1, 0, 0}} 
Output: Yes 
Choose the sub-matrix whose top-left corner is (0, 0) 
and bottom-right corner is (1, 1). 
Changing the parity of the corner elements 
of this sub-matrix will convert A[][] to B[][]

Input: A[][] = {{0, 1, 0, 1}, {1, 0, 1, 0}, {0, 1, 0, 1}}, 
B[][] = {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}} 
Output: No 

Approach: The first thing to notice is that despite the conversions the total parity of both the matrix will remain the same. Hence, check if a[i][j] is not same as b[i][j] then change the parity of the corner elements of the sub-matrix whose left top corner is (0, 0) and right bottom corner is (i, j) for 1 ? i, j. After performing parity change for every a[i][j] which is not equal to b[i][j], check if both the matrix are the same or not. If they are the same, we can change A to B. 

Below is the implementation of the above approach: 

C++




// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
#define N 3
#define M 3
 
// Boolean function that returns
// true or false
bool check(int a[N][M], int b[N][M])
{
    // Traverse for all elements
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < M; j++) {
 
            // If both are not equal
            if (a[i][j] != b[i][j]) {
 
                // Change the parity of
                // all corner elements
                a[i][j] ^= 1;
                a[0][0] ^= 1;
                a[0][j] ^= 1;
                a[i][0] ^= 1;
            }
        }
    }
 
    // Check if A is equal to B
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
 
            // Not equal
            if (a[i][j] != b[i][j])
                return false;
        }
    }
    return true;
}
 
// Driver Code
int main()
{
    // First binary matrix
    int a[N][N] = { { 0, 1, 0 },
                    { 0, 1, 0 },
                    { 1, 0, 0 } };
 
    // Second binary matrix
    int b[N][N] = { { 1, 0, 0 },
                    { 1, 0, 0 },
                    { 1, 0, 0 } };
 
    if (check(a, b))
        cout << "Yes";
    else
        cout << "No";
}


Java




// Java implementation of the
// above approach
import java.io.*;
 
public class GFG {
 
    static final int N = 3, M = 3;
 
    // Boolean function that returns
    // true or false
    static boolean check(int a[][], int b[][])
    {
        // Traverse for all elements
        for (int i = 1; i < N; i++) {
            for (int j = 1; j < M; j++) {
 
                // If both are not equal
                if (a[i][j] != b[i][j]) {
 
                    // Change the parity of
                    // all corner elements
                    a[i][j] ^= 1;
                    a[0][0] ^= 1;
                    a[0][j] ^= 1;
                    a[i][0] ^= 1;
                }
            }
        }
 
        // Check if A is equal to B
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
 
                // Not equal
                if (a[i][j] != b[i][j])
                    return false;
            }
        }
        return true;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        // First binary matrix
        int a[][]
            = { { 0, 1, 0 }, { 0, 1, 0 }, { 1, 0, 0 } };
 
        // Second binary matrix
        int b[][]
            = { { 1, 0, 0 }, { 1, 0, 0 }, { 1, 0, 0 } };
 
        if (check(a, b))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}
 
// This code is contributed by Arnab Kundu


Python3




# Python 3 implementation of the
# above approach
N = 3
M = 3
 
# Boolean function that returns
# true or false
def check(a, b):
     
    # Traverse for all elements
    for i in range(1, N, 1):
        for j in range(1, M, 1):
             
            # If both are not equal
            if (a[i][j] != b[i][j]):
                 
                # Change the parity of
                # all corner elements
                a[i][j] ^= 1
                a[0][0] ^= 1
                a[0][j] ^= 1
                a[i][0] ^= 1
 
    # Check if A is equal to B
    for i in range(N):
        for j in range(M):
             
            # Not equal
            if (a[i][j] != b[i][j]):
                return False
     
    return True
 
# Driver Code
if __name__ == '__main__':
     
    # First binary matrix
    a = [[0, 1, 0],
         [0, 1, 0],
         [1, 0, 0]]
 
    # Second binary matrix
    b = [[1, 0, 0],
         [1, 0, 0],
         [1, 0, 0]]
 
    if (check(a, b)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the
// above approach
using System;
 
class GFG
{
     
static readonly int N = 3,M =3;
 
// Boolean function that returns
// true or false
static bool check(int [,]a, int [,]b)
{
    // Traverse for all elements
    for (int i = 1; i < N; i++)
    {
        for (int j = 1; j < M; j++)
        {
 
            // If both are not equal
            if (a[i,j] != b[i,j])
            {
 
                // Change the parity of
                // all corner elements
                a[i,j] ^= 1;
                a[0,0] ^= 1;
                a[0,j] ^= 1;
                a[i,0] ^= 1;
            }
        }
    }
 
    // Check if A is equal to B
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
 
            // Not equal
            if (a[i,j] != b[i,j])
                return false;
        }
    }
    return true;
}
 
// Driver Code
public static void Main(String []args)
{
    // First binary matrix
    int [,]a = { { 0, 1, 0 },
                    { 0, 1, 0 },
                    { 1, 0, 0 } };
 
    // Second binary matrix
    int [,]b = { { 1, 0, 0 },
                    { 1, 0, 0 },
                    { 1, 0, 0 } };
 
    if (check(a, b))
        Console.Write( "Yes");
    else
        Console.Write( "No");
}
}
 
// This code has been contributed by 29AjayKumar


PHP




<?php
// PHP implementation of the above approach
 
$N = 3;
$M = 3 ;
 
// Boolean function that returns
// true or false
function check($a, $b)
{
    // Traverse for all elements
    for ($i = 1; $i < $GLOBALS['N']; $i++)
    {
        for ($j = 1; $j < $GLOBALS['M']; $j++)
        {
 
            // If both are not equal
            if ($a[$i][$j] != $b[$i][$j])
            {
 
                // Change the parity of
                // all corner elements
                $a[$i][$j] ^= 1;
                $a[0][0] ^= 1;
                $a[0][$j] ^= 1;
                $a[$i][0] ^= 1;
            }
        }
    }
 
    // Check if A is equal to B
    for ($i = 0; $i < $GLOBALS['N']; $i++)
    {
        for ($j = 0; $j < $GLOBALS['M']; $j++)
        {
 
            // Not equal
            if ($a[$i][$j] != $b[$i][$j])
                return false;
        }
    }
    return true;
}
 
    // Driver Code
    // First binary matrix
    $a = array(array( 0, 1, 0 ),
                array( 0, 1, 0 ),
                array( 1, 0, 0 ) );
 
    // Second binary matrix
    $b = array( array( 1, 0, 0 ),
                array(1, 0, 0 ),
                array( 1, 0, 0 ) );
 
    if (check($a, $b))
        echo "Yes";
    else
        echo "No";
 
// This code is contributed by Ryuga
?>


Javascript




<script>
// javascript implementation of the
// above approach    
var N = 3, M = 3;
 
    // Boolean function that returns
    // true or false
    function check(a , b) {
        // Traverse for all elements
        for (i = 1; i < N; i++) {
            for (j = 1; j < M; j++) {
 
                // If both are not equal
                if (a[i][j] != b[i][j]) {
 
                    // Change the parity of
                    // all corner elements
                    a[i][j] ^= 1;
                    a[0][0] ^= 1;
                    a[0][j] ^= 1;
                    a[i][0] ^= 1;
                }
            }
        }
 
        // Check if A is equal to B
        for (i = 0; i < N; i++) {
            for (j = 0; j < M; j++) {
 
                // Not equal
                if (a[i][j] != b[i][j])
                    return false;
            }
        }
        return true;
    }
 
    // Driver Code
     
        // First binary matrix
        var a = [ [ 0, 1, 0 ],
                [ 0, 1, 0 ],
                [ 1, 0, 0 ] ];
 
        // Second binary matrix
        var b = [ [ 1, 0, 0 ],
                [ 1, 0, 0 ],
                [ 1, 0, 0 ] ];
 
        if (check(a, b))
            document.write("Yes");
        else
            document.write("No");
 
// This code contributed by aashish1995
</script>


Output

Yes

Time Complexity: O(N * M)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments