Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if it is possible to reach vector B by rotating vector...

Check if it is possible to reach vector B by rotating vector A and adding vector C to it

Given three 2-Dimensional vector co-ordinates A, B and C. The task is to perform below operations any number of times on vector A to get vector B
 

  • Rotate the vector 90 degrees clockwise.
  • Add vector C to it.

Print “YES” B is obtained using the above operations, else Print “NO”.
Examples: 
 

Input: Vector A: 2 3, Vector B: 2 3, Vector C: 0 0
Output: YES
The given vector A has coordinate (2, 3) and we need to 
convert this vector A to vector B which is also (2, 3). 
By rotating vector A 4 times by 90 degrees and adding
it to vector C(0, 0) will give us vector B(2, 3).

Input: Vector A: 0 0, Vector B: 1 1, Vector C: 2 2
Output: NO

 

 

Below is the step by step algorithm to solve this problem:
 

  • Initialize three vectors of 2-D coordinates as A ( a, b ), B ( x, y ) and C ( p, q ).
  • Coordinates of vector A can be of any quadrant. So, initialize a check function for all the quadrant and check if any of it is true.
  • Find a-x and b-y, which will tell us how much we need to make it to vector B.
  • Initialize d = p*p + q*q. If d = 0 then you need not to add anything in vector A.
  • If D > 0, then check if a*p + b*q and b*p – a*q is in the multiple of ‘d’ so that it is possible to get the vector B.

Below is the implementation of above algorithm: 
 

C++




// C++ program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times
 
#include <bits/stdc++.h>
using namespace std;
#define ll long long
 
// function to check if vector B is
// possible from vector A
ll check(ll a, ll b, ll p, ll q)
{
    ll d = p * p + q * q;
 
    // if d = 0, then you need to add nothing to vector A
    if (d == 0)
        return a == 0 && b == 0;
    else
        return (a * p + b * q) % d == 0 && (b * p - a * q) % d == 0;
}
 
bool check(int a, int b, int x, int y, int p, int q)
{
    // for all four quadrants
    if (check(a - x, b - y, p, q)
        || check(a + x, b + y, p, q)
        || check(a - y, b + x, p, q)
        || check(a + y, b - x, p, q))
        return true;
    else
        return false;
}
 
// Driver code
int main()
{
    // initialize all three
    // vector coordinates
 
    int a = -4, b = -2;
    int x = 0, y = 0;
    int p = -2, q = -1;
 
    if (check(a, b, x, y, p, q))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times.
   
public class GFG {
 
    // function to check if vector B is
    // possible from vector A
    static boolean check(long a, long b, long p, long q)
    {
        long d = p * p + q * q;
       
        // if d = 0, then you need to add nothing to vector A
        if (d == 0)
            return a == 0 && b == 0;
        else
            return (a * p + b * q) % d == 0 && (b * p - a * q) % d == 0;
    }
       
    static boolean check(int a, int b, int x, int y, int p, int q)
    {
        // for all four quadrants
        if (check(a - x, b - y, p, q)
            || check(a + x, b + y, p, q)
            || check(a - y, b + x, p, q)
            || check(a + y, b - x, p, q))
            return true;
        else
            return false;
    }
       
 
    // Driver code
    public static void main(String args[])
    {
        // initialize all three
        // vector coordinates
       
        int a = -4, b = -2;
        int x = 0, y = 0;
        int p = -2, q = -1;
       
        if (check(a, b, x, y, p, q))
            System.out.println("Yes");
        else
            System.out.println("No");
     
    }
    // This Code is contributed by ANKITRAI1
}


Python3




# Python3 program to Check if it
# is possible to reach vector B
# by Rotating vector A and adding
# vector C to it any number of times
 
# function to check if vector B
# is possible from vector A
def check(a, b, p, q):
 
    d = p * p + q * q;
 
    # if d = 0, then you need to
    # add nothing to vector A
    if (d == 0):
        return a == 0 and b == 0;
    else :
        return ((a * p + b * q) % d == 0 and
                (b * p - a * q) % d == 0);
 
def checks(a, b, x, y, p, q):
 
    # for all four quadrants
    if (check(a - x, b - y, p, q) or
        check(a + x, b + y, p, q) or
        check(a - y, b + x, p, q) or
        check(a + y, b - x, p, q)):
        return True;
    else:
        return False;
 
# Driver code
 
# initialize all three
# vector coordinates
a = -4;
b = -2;
x = 0;
y = 0;
p = -2;
q = -1;
 
if (checks(a, b, x, y, p, q)):
    print( "Yes");
else:
    print ("No");
 
# This code is contributed
# by Shivi_Aggarwal


C#




// C# program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times.
using System;
class GFG
{
 
// function to check if vector B is
// possible from vector A
static bool check(long a, long b,
                  long p, long q)
{
    long d = p * p + q * q;
     
    // if d = 0, then you need to
    // add nothing to vector A
    if (d == 0)
        return a == 0 && b == 0;
    else
        return (a * p + b * q) % d == 0 &&
               (b * p - a * q) % d == 0;
}
     
static bool check(int a, int b, int x,
                  int y, int p, int q)
{
    // for all four quadrants
    if (check(a - x, b - y, p, q) ||
        check(a + x, b + y, p, q) ||
        check(a - y, b + x, p, q) ||
        check(a + y, b - x, p, q))
        return true;
    else
        return false;
}
     
// Driver code
public static void Main()
{
    // initialize all three
    // vector coordinates
    int a = -4, b = -2;
    int x = 0, y = 0;
    int p = -2, q = -1;
     
    if (check(a, b, x, y, p, q))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times
 
 
// function to check if vector B is
// possible from vector A
function check($a, $b, $p, $q)
{
    $d = $p * $p + $q * $q;
 
    // if d = 0, then you need to add nothing to vector A
    if ($d == 0)
        return ( $a == 0 && $b == 0);
    else
        return (($a * $p + $b * $q) % $d == 0 &&
                ($b * $p - $a * $q) % $d == 0);
}
 
function check1($a, $b, $x, $y, $p, $q)
{
    // for all four quadrants
        if (check($a - $x, $b - $y, $p, $q)
        || check($a + $x, $b + $y, $p, $q)
        || check($a - $y, $b + $x, $p, $q)
        || check($a + $y, $b - $x, $p, $q))
        return true;
    else
        return false;
}
 
// Driver code
 
    // initialize all three
    // vector coordinates
 
    $a = -4;
    $b = -2;
    $x = 0;
    $y = 0;
    $p = -2;
    $q = -1;
 
    if (check1($a, $b, $x, $y, $p, $q))
        echo "Yes";
    else
        echo "No";
 
// This Code is contributed by mits
?>


Javascript




<script>
 
// Javascript program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times.
 
// Function to check if vector B is
// possible from vector A
function _check(a, b, p, q)
{
    var d = p * p + q * q;
   
    // If d = 0, then you need
    // to add nothing to vector A
    if (d == 0)
        return a == 0 && b == 0;
    else
        return (a * p + b * q) % d == 0 &&
               (b * p - a * q) % d == 0;
}
   
function check(a, b, x, y, p, q)
{
 
 
        // for all four qua
    // for all four quadrants
    if (_check(a - x, b - y, p, q)
        || _check(a + x, b + y, p, q)
        || _check(a - y, b + x, p, q)
        || _check(a + y, b - x, p, q))
        return true;
    else
        return false;
}
       
// Driver code
 
// Initialize all three
// vector coordinates
var a = -4, b = -2;
var x = 0, y = 0;
var p = -2, q = -1;
 
if (check(a, b, x, y, p, q))
    document.write("Yes");
else
    document.write("No");
            
// This code is contributed by Kirti
 
</script>


Output: 

Yes

 

Time Complexity: O(1) 
Auxiliary space: O(1)

Last Updated :
25 May, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments