Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICheck if it is possible to reach to the index with value...

Check if it is possible to reach to the index with value K when start index is given

Given an array arr[] of N positive integers and two positive integers S and K, the task is to reach the position of the array whose value is K from index S. We can only move from current index i to index (i + arr[i]) or (i – arr[i]). If there is a way to reach the position of the array whose value is K then print “Yes” else print “No”.

Examples: 

Input: arr[] = {4, 2, 3, 0, 3, 1, 2}, S = 5, K = 0. 
Output: Yes 
Explanation: 
Initially we are standing at index 5 that is element 1 hence we can move one step forward or backward. Therefore, all possible ways to reach at index 3 with value 0 are: 
index 5 -> index 4 -> index 1 -> index 3 
index 5 -> index 6 -> index 4 -> index 1 -> index 3. Since it is possible to reach index 3 our output is yes.

Input: arr[] = {0, 3, 2, 1, 2}, S = 2, K = 3 
Output: No 
Explanation: 
There is no way to reach index 1 with value 3. 

Method 1 – Using BFS The Breadth-first search(BFS) approach is discussed below: 

  • Consider start index S as the source node and insert it into the queue.
  • While the queue is not empty do the following: 
    1. Pop the element from the top of the queue say temp.
    2. If temp is already visited or it is array out of bound index then, go to step 1.
    3. Else mark it as visited.
    4. Now if temp is the index of the array whose value is K, then print “Yes”.
    5. Else take two possible destinations from temp to (temp + arr[temp]), (temp – arr[temp]) and push it into the queue.
  • If the index with value K is not reached after the above steps then print “No”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// BFS approach to check if traversal
// is possible or not
bool check(int arr[], int& s_start,
        int start, bool visited[],
        int size, int K)
{
    queue<int> q;
 
    // Push start index into queue
    q.push(start);
 
    // Until queue is not empty
    while (!q.empty()) {
 
        // Top element of queue
        int front = q.front();
 
        // Pop the topmost element
        q.pop();
 
        // mark as visited
        visited[front] = true;
 
        if (arr[front] == K
            && front != s_start) {
            return true;
        }
 
        // Check for i + arr[i]
        if (front + arr[front] >= 0
            && front + arr[front] < size
            && visited[front + arr[front]]
                == false) {
 
            q.push(front + arr[front]);
        }
 
        // Check for i - arr[i]
        if (front - arr[front] >= 0
            && front - arr[front] < size
            && visited[front - arr[front]]
                == false) {
 
            q.push(front - arr[front]);
        }
    }
 
    return false;
}
 
// Function to check if index with value
// K can be reached or not
void solve(int arr[], int n, int start,
        int K)
{
 
    // Initialize visited array
    bool visited[n] = { false };
 
    // BFS Traversal
    bool ans = check(arr, start, start,
                    visited, n, K);
 
    // Print the result
    if (ans)
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 3, 0, 2, 1, 2 };
 
    // Given start and end
    int start = 2;
    int K = 0;
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    solve(arr, N, start, K);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
  // BFS approach to check if traversal
  // is possible or not
  static boolean check(int arr[], int s_start, int start,
                       boolean visited[], int size, int K)
  {
    Queue<Integer> q = new LinkedList<Integer>();
 
    // Push start index into queue
    q.add(start);
 
    // Until queue is not empty
    while (!q.isEmpty())
    {
 
      // Top element of queue
      int front = q.peek();
 
      // Pop the topmost element
      q.remove();
 
      // mark as visited
      visited[front] = true;
 
      if (arr[front] == K && front != s_start)
      {
        return true;
      }
 
      // Check for i + arr[i]
      if (front + arr[front] >= 0 &&
          front + arr[front] < size &&
          visited[front + arr[front]] == false)
      {
 
        q.add(front + arr[front]);
      }
 
      // Check for i - arr[i]
      if (front - arr[front] >= 0 &&
          front - arr[front] < size &&
          visited[front - arr[front]] == false)
      {
        q.add(front - arr[front]);
      }
    }
 
    return false;
  }
 
  // Function to check if index with value
  // K can be reached or not
  static void solve(int arr[], int n, int start, int K)
  {
 
    // Initialize visited array
    boolean visited[] = new boolean[n];
 
    // BFS Traversal
    boolean ans = check(arr, start, start,
                        visited, n, K);
 
    // Print the result
    if (ans)
      System.out.print("Yes");
    else
      System.out.print("No");
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Given array arr[]
    int arr[] = { 3, 0, 2, 1, 2 };
 
    // Given start and end
    int start = 2;
    int K = 0;
 
    int N = arr.length;
 
    // Function Call
    solve(arr, N, start, K);
  }
}
 
// This code is contributed by Rohit_ranjan


Python3




# Python3 program for the above approach
  
# BFS approach to check if traversal
# is possible or not
def check(arr, s_start, start,
          visited, size, K):
 
    q = []
  
    # Push start index into queue
    q.append(start)
  
    # Until queue is not empty
    while (len(q) != 0):
  
        # Top element of queue
        front = q[-1]
  
        # Pop the topmost element
        q.pop(0)
  
        # Mark as visited
        visited[front] = True
  
        if (arr[front] == K and front != s_start):
            return True
  
        # Check for i + arr[i]
        if (front + arr[front] >= 0 and
            front + arr[front] < size and
            visited[front + arr[front]] == False):
            q.append(front + arr[front])
  
        # Check for i - arr[i]
        if (front - arr[front] >= 0 and
            front - arr[front] < size and
            visited[front - arr[front]] == False):
            q.append(front - arr[front])
  
    return False
     
# Function to check if index with value
# K can be reached or not
def solve(arr, n, start, K):
  
    # Initialize visited array
    visited = [False for i in range(n)]
  
    # BFS Traversal
    ans = check(arr, start, start,
                visited, n, K)
  
    # Print the result
    if (ans):
        print('Yes')
    else:
        print('No')
 
# Driver Code
if __name__=="__main__":
 
    # Given array arr[]
    arr = [ 3, 0, 2, 1, 2 ]
  
    # Given start and end
    start = 2
    K = 0
  
    N = len(arr)
  
    # Function Call
    solve(arr, N, start, K)
     
# This code is contributed by rutvik_56


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// BFS approach to check if traversal
// is possible or not
static bool check(int []arr, int s_start, int start,
                  bool []visited, int size, int K)
{
    Queue<int> q = new Queue<int>();
 
    // Push start index into queue
    q.Enqueue(start);
 
    // Until queue is not empty
    while (q.Count != 0)
    {
         
        // Top element of queue
        int front = q.Peek();
     
        // Pop the topmost element
        q.Dequeue();
     
        // mark as visited
        visited[front] = true;
     
        if (arr[front] == K && front != s_start)
        {
            return true;
        }
     
        // Check for i + arr[i]
        if (front + arr[front] >= 0 &&
            front + arr[front] < size &&
            visited[front + arr[front]] == false)
        {
            q.Enqueue(front + arr[front]);
        }
     
        // Check for i - arr[i]
        if (front - arr[front] >= 0 &&
            front - arr[front] < size &&
            visited[front - arr[front]] == false)
        {
            q.Enqueue(front - arr[front]);
        }
    }
    return false;
}
 
// Function to check if index with value
// K can be reached or not
static void solve(int []arr, int n, int start,
                  int K)
{
 
    // Initialize visited array
    bool []visited = new bool[n];
 
    // BFS Traversal
    bool ans = check(arr, start, start,
                     visited, n, K);
 
    // Print the result
    if (ans)
        Console.Write("Yes");
    else
        Console.Write("No");
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given array []arr
    int []arr = { 3, 0, 2, 1, 2 };
 
    // Given start and end
    int start = 2;
    int K = 0;
 
    int N = arr.Length;
 
    // Function call
    solve(arr, N, start, K);
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
    // JavaScript program for the above approach
     
    // BFS approach to check if traversal
    // is possible or not
    function check(arr, s_start, start, visited, size, K)
    {
      let q = [];
 
      // Push start index into queue
      q.push(start);
 
      // Until queue is not empty
      while (q.length > 0)
      {
 
        // Top element of queue
        let front = q[0];
 
        // Pop the topmost element
        q.shift();
 
        // mark as visited
        visited[front] = true;
 
        if (arr[front] == K && front != s_start)
        {
          return true;
        }
 
        // Check for i + arr[i]
        if (front + arr[front] >= 0 &&
            front + arr[front] < size &&
            visited[front + arr[front]] == false)
        {
 
          q.push(front + arr[front]);
        }
 
        // Check for i - arr[i]
        if (front - arr[front] >= 0 &&
            front - arr[front] < size &&
            visited[front - arr[front]] == false)
        {
          q.push(front - arr[front]);
        }
      }
 
      return false;
    }
 
    // Function to check if index with value
    // K can be reached or not
    function solve(arr, n, start, K)
    {
 
      // Initialize visited array
      let visited = new Array(n);
 
      // BFS Traversal
      let ans = check(arr, start, start,
                          visited, n, K);
 
      // Print the result
      if (ans)
        document.write("Yes");
      else
        document.write("No");
    }
     
    // Given array arr[]
    let arr = [ 3, 0, 2, 1, 2 ];
  
    // Given start and end
    let start = 2;
    let K = 0;
  
    let N = arr.length;
  
    // Function Call
    solve(arr, N, start, K);
 
</script>


Output

No

Time Complexity: O(N) 
Auxiliary Space: O(N)

Method 2 – Using DFS: The Depth-first search(DFS) approach is discussed below: 

  1. Initialize an array visited[] to mark visited vertex as true.
  2. Start with the start index S and explore other index depth-wise using recursion.
  3. In each recursive call, we check if that index is valid or previously not visited. If not so, we return false.
  4. Else if that index value is K, we return true.
  5. Else mark that index as visited and process recursively for i + arr[i] and i – arr[i] from current index i.
  6. If any of the recursive calls return true, this means that we reach to index with value K is possible and we print “Yes” Else print “No”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// DFS approach to check if traversal
// is possible or not
bool check(int arr[], int& s_start,
        int start, bool visited[],
        int size, int K)
{
    // Base cases
    if (start < 0 || start >= size
        || visited[start]) {
        return false;
    }
 
    // Check if start index value K
    if (arr[start] == K
        && start != s_start) {
        return true;
    }
 
    // Mark as visited
    visited[start] = true;
 
    // Check for both i + arr[i]
    // and i - arr[i] recursively
    return (check(arr, s_start,
                start + arr[start],
                visited, size, K)
 
            || check(arr, s_start,
                    start - arr[start],
                    visited, size, K));
}
 
// Function to check if index with value
// K can be reached or not
void solve(int arr[], int n, int start,
        int K)
{
 
    // Initialize visited array
    bool visited[n] = { false };
 
    // DFS Traversal
    bool ans = check(arr, start, start,
                    visited, n, K);
 
    // Print the result
    if (ans)
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 3, 0, 2, 1, 2 };
 
    // Given start and end
    int start = 2;
    int K = 0;
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    solve(arr, N, start, K);
    return 0;
}


Java




// Java program for the above approach
import java.util.Arrays;
 
class GFG{
     
// DFS approach to check if traversal
// is possible or not
public static boolean check(int[] arr, int s_start,
                            int start, boolean[] visited,
                            int size, int K)
{
     
    // Base cases
    if (start < 0 || start >= size ||
        visited[start])
    {
        return false;
    }
     
    // Check if start index value K
    if (arr[start] == K &&
            start != s_start)
    {
        return true;
    }
     
    // Mark as visited
    visited[start] = true;
     
    // Check for both i + arr[i]
    // and i - arr[i] recursively
    return (check(arr, s_start,
                start + arr[start],
                visited, size, K) ||
            check(arr, s_start,
                start - arr[start],
                visited, size, K));
}
     
// Function to check if index with value
// K can be reached or not
public static void solve(int[] arr, int n,
                        int start, int K)
{
     
    // Initialize visited array
    boolean[] visited = new boolean[n];
    Arrays.fill(visited, false);
     
    // DFS Traversal
    boolean ans = check(arr, start, start,
                        visited, n, K);
     
    // Print the result
    if (ans)
        System.out.print("Yes");
    else
        System.out.print("No");
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given array arr[]
    int arr[] = { 3, 0, 2, 1, 2 };
     
    // Given start and end
    int start = 2;
    int K = 0;
     
    int N = arr.length;
     
    // Function call
    solve(arr, N, start, K);
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 program for the above approach
 
# DFS approach to check if traversal
# is possible or not
def check(arr, s_start, start, visited,
          size, K):
 
    # Base cases
    if (start < 0 or start >= size or
        visited[start]):
        return False
     
    # Check if start index value K
    if (arr[start] == K and
            start != s_start):
        return True
 
    # Mark as visited
    visited[start] = True
 
    # Check for both i + arr[i]
    # and i - arr[i] recursively
    return (check(arr, s_start,
                  start + arr[start],
                  visited, size, K) or
            check(arr, s_start,
                  start - arr[start],
                  visited, size, K))
 
# Function to check if index with value
# K can be reached or not
def solve(arr, n, start, K):
 
    # Initialize visited array
    visited = [False] * n
 
    # DFS Traversal
    ans = check(arr, start, start,
                visited, n, K)
 
    # Print the result
    if (ans):
        print("Yes")
    else:
        print("No")
 
# Driver Code
if __name__ == "__main__":
     
    # Given array arr[]
    arr = [ 3, 0, 2, 1, 2 ]
 
    # Given start and end
    start = 2
    K = 0
 
    N = len(arr)
 
    # Function call
    solve(arr, N, start, K)
 
# This code is contributed by chitranayal


C#




// C# program for the above approach
using System;
 
class GFG{
     
// DFS approach to check if traversal
// is possible or not
public static bool check(int[] arr, int s_start,
                         int start, bool[] visited,
                         int size, int K)
{
     
    // Base cases
    if (start < 0 || start >= size||
        visited[start])
    {
        return false;
    }
     
    // Check if start index value K
    if (arr[start] == K &&
            start != s_start)
    {
        return true;
    }
     
    // Mark as visited
    visited[start] = true;
     
    // Check for both i + arr[i]
    // and i - arr[i] recursively
    return (check(arr, s_start,
                  start + arr[start],
                  visited, size, K) ||
            check(arr, s_start,
                  start - arr[start],
                  visited, size, K));
}
     
// Function to check if index with value
// K can be reached or not
public static void solve(int[] arr, int n,
                         int start, int K)
{
     
    // Initialize visited array
    bool[] visited = new bool[n];
     
    // DFS Traversal
    bool ans = check(arr, start, start,
                     visited, n, K);
     
    // Print the result
    if (ans)
        Console.Write("Yes");
    else
        Console.Write("No");
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given array []arr
    int []arr = { 3, 0, 2, 1, 2 };
     
    // Given start and end
    int start = 2;
    int K = 0;
     
    int N = arr.Length;
     
    // Function call
    solve(arr, N, start, K);
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript program for the above approach
 
// DFS approach to check if traversal
// is possible or not
function check(arr, s_start,
        start, visited,
        size, K)
{
    // Base cases
    if (start < 0 || start >= size
        || visited[start]) {
        return false;
    }
 
    // Check if start index value K
    if (arr[start] == K
        && start != s_start) {
        return true;
    }
 
    // Mark as visited
    visited[start] = true;
 
    // Check for both i + arr[i]
    // and i - arr[i] recursively
    return (check(arr, s_start,
                start + arr[start],
                visited, size, K)
 
            || check(arr, s_start,
                    start - arr[start],
                    visited, size, K));
}
 
// Function to check if index with value
// K can be reached or not
function solve(arr, n, start, K)
{
 
    // Initialize visited array
    var visited = Array(n).fill(false);
 
    // DFS Traversal
    var ans = check(arr, start, start,
                    visited, n, K);
 
    // Print the result
    if (ans)
        document.write("Yes");
    else
        document.write("No");
}
 
// Driver Code
 
// Given array arr[]
var arr = [ 3, 0, 2, 1, 2 ];
 
// Given start and end
var start = 2;
var K = 0;
var N = arr.length;
 
// Function Call
solve(arr, N, start, K);
 
// This code is contributed by rrrtnx.
</script>


Output

No

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Method 3 : DFS (Efficient Method) : We will follow the steps mention below :

  1. As array contains only positive number, so each time using dfs multiply that number with -1 which confirms that we have visited that element before.
  2. Check if the given index element is same as K or not.
  3. Otherwise, call dfs by increasing start + arr[start] and by decreasing start – arr[start].
  4. In base case check if start is in range of array length and also check is it visited before or not.

Implementation of above approach :

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// DFS approach to check if traversal
// is possible or not
bool dfs(int arr[], int N, int start, int K)
{
    // Base cases
    if (start < 0 || start >= N || arr[start] < 0)
        return false;
 
    // Marking visited
    arr[start] *= -1;
 
    // Checking is that the element we needed or not
    // otherwise making call for dfs again for different
    // positions
    return (abs(arr[start]) == K)
           || dfs(arr, N, start + arr[start], K)
           || dfs(arr, N, start - arr[start], K);
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 3, 0, 2, 1, 2 };
 
    // Given start and end
    int start = 2;
    int K = 0;
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    bool flag = dfs(arr, N, start, K);
    if (flag)
        cout << "Yes";
    else
        cout << "No";
    return 0;
}


Java




// Java program for the above approach
import java.util.Arrays;
 
class GFG {
 
    // DFS approach to check if traversal
    // is possible or not
    public static boolean dfs(int[] arr, int N, int start,
                              int K)
    {
        // Base Cases
        if (start < 0 || start >= N || arr[start] < 0)
            return false;
 
        // Marking visited
        arr[start] *= -1;
 
        // Checking is that the element we needed or not
        // otherwise making call for dfs again for different
        // positions
        return (Math.abs(arr[start]) == K)
            || dfs(arr, N, start + arr[start], K)
            || dfs(arr, N, start - arr[start], K);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // Given array arr[]
        int arr[] = { 3, 0, 2, 1, 2 };
 
        // Given start and end
        int start = 2;
        int K = 0;
 
        int N = arr.length;
 
        // Function call
        if (dfs(arr, N, start, K))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}


Python3




# Python3 program for the above approach
 
# DFS approach to check if traversal
# is possible or not
def dfs(arr, N, start, K):
    # Base Cases
    if start < 0 or start >= N or arr[start] < 0:
        return False
 
    # Marking visited
    arr[start] *= -1
 
    # Checking is that the element we needed or not
    # otherwise making call for dfs again for different positions
    return abs(arr[start]) == K or dfs(arr, N, start + arr[start], K) or dfs(arr, N, start - arr[start], K)
     
# Given array arr[]
arr = [ 3, 0, 2, 1, 2 ]
 
# Given start and end
start = 2
K = 0
 
N = len(arr)
 
# Function call
if dfs(arr, N, start, K):
  print("Yes")
else:
  print("No")
   
  # This code is contributed by divyesh072019.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    // DFS approach to check if traversal
    // is possible or not
    static bool dfs(int[] arr, int N, int start, int K)
    {
       
        // Base Cases
        if (start < 0 || start >= N || arr[start] < 0)
            return false;
  
        // Marking visited
        arr[start] *= -1;
  
        // Checking is that the element we needed or not
        // otherwise making call for dfs again for different
        // positions
        return (Math.Abs(arr[start]) == K)
            || dfs(arr, N, start + arr[start], K)
            || dfs(arr, N, start - arr[start], K);
    }
     
  static void Main()
  {
     
    // Given array arr[]
    int[] arr = { 3, 0, 2, 1, 2 };
 
    // Given start and end
    int start = 2;
    int K = 0;
 
    int N = arr.Length;
 
    // Function call
    if (dfs(arr, N, start, K))
        Console.Write("Yes");
    else
        Console.Write("No");
  }
}
 
// This code is contributed by rameshtravel07.


Javascript




<script>
    // Javascript program for the above approach
     
    // DFS approach to check if traversal
    // is possible or not
    function dfs(arr, N, start, K)
    {
        // Base Cases
        if (start < 0 || start >= N || arr[start] < 0)
            return false;
  
        // Marking visited
        arr[start] *= -1;
  
        // Checking is that the element we needed or not
        // otherwise making call for dfs again for different
        // positions
        return (Math.abs(arr[start]) == K)
            || dfs(arr, N, start + arr[start], K)
            || dfs(arr, N, start - arr[start], K);
    }
     
    // Given array arr[]
    let arr = [ 3, 0, 2, 1, 2 ];
 
    // Given start and end
    let start = 2;
    let K = 0;
 
    let N = arr.length;
 
    // Function call
    if (dfs(arr, N, start, K))
      document.write("Yes");
    else
      document.write("No");
 
// This code is contributed by mukesh07.
</script>


Output

No

Time Complexity : O(n)

Auxiliary Space : O(n), (Space is only used for recursion)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments