Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AICheck if it is possible to construct an Array of size N...

Check if it is possible to construct an Array of size N having sum as S and XOR value as X

Given three numbers N, S and X the task is to find if it is possible to construct a sequence A of length N, where each A[i] >= 0 for 1<=i<=N and the sum of all numbers in a sequence is equal to S, and the bit-wise XOR of sequence equals to X.

Examples:

Input: N = 3, S = 10, X = 4 
Output: Yes
Explanation: One of the sequence possible is {4, 3, 3} where sum equals 10 and XOR equals 4

Input: N = 1, S = 5, X = 3
Output: No

 

Approach: Lets consider the following test cases. 

Case-1: When N equals 1 it can be easily seen that when (S equals X) then only return “Yes” otherwise “No“. 

Case-2: When N is greater than equal to 3, use the formula (a + b) = (a xor b) + 2(a and b) Here it can be seen that (a + b) = S and (a xor b) = X so equation becomes S = X + 2(a.b). Therefore, (S-X) should be even because on right side we have 2(a.b). So, it can be said that is S is odd then X is odd  and if S is even then X is even then only, (S-X) is also even which can be checked by (S%2 == X%2) also S >= X otherwise A.B turns negative Which is not possible. 

Case-3: For the case N equals 3, it is something like  A + B + C =  S  and A^B^C = X. Use the property A^A = 0 and  0^A = A => X + ( S – X)/2 + (S – X)/2 =  X + (S-X) => X + ( S – X)/2 + (S – X)/2 =  S and also this way: X ^( (S – X)/2 ^ (S-X)/2 ) = X ^ 0 = X. Hence, it is proved that for N == 3 there will always be such sequence and we can just return “Yes“. 

Case-4: When N == 2 and  (S%2 == X%2) and S >= X, assume  A + B == S  and (A^B) == X then ( A and B) == (S-X)/2  From the equation discussed above. Let C = A.B. On observing carefully it can be noticed that the bits of C are “1” only when A and B bits are “1” for that position and off otherwise. And X that is xor of A, B has on bit only when there are different bits that is at ith  position A has ‘0’ and B has ‘1’ or the just opposite: So looking at this sequence, assign every bits into variable A and B, C = ( S – X)/2. Assign A and B from C -> A = C, B = C

Now add the X into A or B to assign all the ones into A and all zero to B so when we XOR both numbers then the added ‘1’ bits into A will just be opposite to what we added into B that is ‘0’. The fun part is when set bits of C coincides with some set bits of X then it will not give the desired xor of X, Now, A = C  + X, B = C. Now A+B = ( C + X) + C =  S and when XOR A.B equals X then it can be sure that there exist such pair when A + B == S  and (A^B) == X;

Follow the steps below to solve the problem:

  • If S is greater than equal to X, and S%2 is equal to X%2 then perform the following steps, else return No.
    • If n is greater than equal to 3, then return Yes.
    • If n equals 1, and if S equals X, then return Yes else return No.
    • If n equals to 2, initialize the variable C as (S-X)/2 and set variables A and B as C and add the value X to the variable A and if A^B equals X, then print Yes else print No.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find if any sequence is
// possible or not.
string findIfPossible(int N, int S, int X)
{
    if (S >= X and S % 2 == X % 2) {
 
        // Since, S is greater than equal to
        // X, and either both are odd or even
        // There always exists a sequence
        if (N >= 3) {
            return "Yes";
        }
        if (N == 1) {
 
            // Only one case possible is
            // S == X or NOT;
            if (S == X) {
                return "Yes";
            }
            else {
                return "No";
            }
        }
 
        // Considering the above conditions true,
        // check if XOR of S^(S-X) is X or not
        if (N == 2) {
 
            int C = (S - X) / 2;
            int A = C;
            int B = C;
            A = A + X;
            if (((A ^ B) == X)) {
                return "Yes";
            }
            else {
                return "No";
            }
        }
    }
    else {
        return "No";
    }
}
 
// Driver Code
int main()
{
 
    int N = 3, S = 10, X = 4;
 
    cout << findIfPossible(N, S, X);
 
    return 0;
}


C




// C program for the above approach
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
 
// Function to find if any sequence is
// possible or not.
char* findIfPossible(int N, int S, int X)
{
    if (S >= X && S % 2 == X % 2) {
 
        // Since, S is greater than equal to
        // X, and either both are odd or even
        // There always exists a sequence
        if (N >= 3) {
            return "Yes";
        }
        if (N == 1) {
 
            // Only one case possible is
            // S == X or NOT;
            if (S == X) {
                return "Yes";
            }
            else {
                return "No";
            }
        }
 
        // Considering the above conditions true,
        // check if XOR of S^(S-X) is X or not
        if (N == 2) {
 
            int C = (S - X) / 2;
            int A = C;
            int B = C;
            A = A + X;
            if (((A ^ B) == X)) {
                return "Yes";
            }
            else {
                return "No";
            }
        }
    }
    else {
        return "No";
    }
}
 
// Driver Code
int main()
{
 
    int N = 3, S = 10, X = 4;
    printf("%s\n", findIfPossible(N, S, X));
    return 0;
}
 
// This code is contributed by phalasi.


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to find if any sequence is
    // possible or not.
    static void findIfPossible(int N, int S, int X)
    {
        if ((S >= X) && (S % 2 == X % 2)) {
 
            // Since, S is greater than equal to
            // X, and either both are odd or even
            // There always exists a sequence
            if (N >= 3) {
                System.out.println("Yes");
            }
            if (N == 1) {
 
                // Only one case possible is
                // S == X or NOT;
                if (S == X) {
                    System.out.println("Yes");
                }
                else {
                    System.out.println("No");
                }
            }
 
            // Considering the above conditions true,
            // check if XOR of S^(S-X) is X or not
            if (N == 2) {
 
                int C = (S - X) / 2;
                int A = C;
                int B = C;
                A = A + X;
                if (((A ^ B) == X)) {
                    System.out.println("Yes");
                }
                else {
                    System.out.println("No");
                }
            }
        }
        else {
            System.out.println("No");
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        int N = 3, S = 10, X = 4;
 
        findIfPossible(N, S, X);
    }
}
 
// This code is contributed by code_hunt.


Python3




# Python program for the above approach
# Function to find if any sequence is
# possible or not.
 
 
def findIfPossible(N,  S,  X):
 
    if (S >= X and S % 2 == X % 2):
        # Since, S is greater than equal to
        # X, and either both are odd or even
        # There always exists a sequence
        if (N >= 3):
            return "Yes"
 
        if (N == 1):
 
            # Only one case possible is
            # S == X or NOT
            if (S == X):
                return "Yes"
            else:
                return "No"
 
        # Considering the above conditions true,
        # check if XOR of S^(S-X) is X or not
        if (N == 2):
            C = (S - X) // 2
            A = C
            B = C
            A = A + X
            if (((A ^ B) == X)):
                return "Yes"
            else:
                return "No"
    else:
        return "No"
 
 
# Driver Code
N = 3
S = 10
X = 4
 
print(findIfPossible(N, S, X))
 
# This code is contributed by shivanisinghss2110


C#




// C# program for the above approach
using System;
 
public class GFG {
 
    // Function to find if any sequence is
    // possible or not.
    static void findIfPossible(int N, int S, int X)
    {
        if ((S >= X) && (S % 2 == X % 2)) {
 
            // Since, S is greater than equal to
            // X, and either both are odd or even
            // There always exists a sequence
            if (N >= 3) {
                Console.WriteLine("Yes");
            }
            if (N == 1) {
 
                // Only one case possible is
                // S == X or NOT;
                if (S == X) {
                    Console.WriteLine("Yes");
                }
                else {
                    Console.WriteLine("No");
                }
            }
 
            // Considering the above conditions true,
            // check if XOR of S^(S-X) is X or not
            if (N == 2) {
 
                int C = (S - X) / 2;
                int A = C;
                int B = C;
                A = A + X;
                if (((A ^ B) == X)) {
                    Console.WriteLine("Yes");
                }
                else {
                    Console.WriteLine("No");
                }
            }
        }
        else {
            Console.WriteLine("No");
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int N = 3, S = 10, X = 4;
 
        findIfPossible(N, S, X);
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find if any sequence is
        // possible or not.
        function findIfPossible(N, S, X) {
            if (S >= X && S % 2 == X % 2) {
 
                // Since, S is greater than equal to
                // X, and either both are odd or even
                // There always exists a sequence
                if (N >= 3) {
                    return "Yes";
                }
                if (N == 1) {
 
                    // Only one case possible is
                    // S == X or NOT;
                    if (S == X) {
                        return "Yes";
                    }
                    else {
                        return "No";
                    }
                }
 
                // Considering the above conditions true,
                // check if XOR of S^(S-X) is X or not
                if (N == 2) {
 
                    let C = (S - X) / 2;
                    let A = C;
                    let B = C;
                    A = A + X;
                    if (((A ^ B) == X)) {
                        return "Yes";
                    }
                    else {
                        return "No";
                    }
                }
            }
            else {
                return "No";
            }
        }
 
        // Driver Code
        let N = 3, S = 10, X = 4;
 
        document.write(findIfPossible(N, S, X));
 
// This code is contributed by Potta Lokesh
    </script>


Output

Yes

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments