Given a directed Graph G(V, E) with V vertices and E edges, the task is to check that for all vertices of the given graph, the incoming edges in a vertex is equal to the vertex itself or not.
Examples:
Input:
Output: Yes
Explanation:
For vertex 0 there are 0 incoming edges, for vertex 1 there is 1 incoming edge. Same for vertex 2 nd 3.
Approach: The idea is to traverse adjacency list for every vertex, and increment the count of edges of every vertex that has an incoming edge from i. Repeat the steps for every vertex and then check the in degrees for all the vertices equal to vertex value or not.
Below is the implementation of the above approach:
C++
// C++ implementation to check if the // incoming edges in a vertex of directed // graph is equal to the vertex itself or not #include <bits/stdc++.h> using namespace std; // A utility function to // add an edge in an // directed graph void add_edge(vector< int > adj[], int x, int y) { adj[x].push_back(y); } // Function to check that given graph // in-degree value equal to vertex value bool Indegree(vector< int > adj[], int v) { // Create array indeg // initialized to zero int indeg[v] = { 0 }; // Traversing across all // vertex to compute // in degree value for ( int i = 0; i < v; i++) { for ( int j = 0; j < adj[i].size(); j++) { indeg[adj[i][j]]++; } } // check in degree value // equal to vertex value for ( int i = 0; i < v; i++) { if (i == indeg[i]) continue ; else return false ; } return true ; } // Driver code int main() { int v = 4; // To store adjacency list of graph vector< int > adj[v]; add_edge(adj, 0, 1); add_edge(adj, 1, 2); add_edge(adj, 0, 2); add_edge(adj, 0, 3); add_edge(adj, 1, 3); add_edge(adj, 2, 3); if (Indegree(adj, v)) cout << "Yes" ; else cout << "No" ; } |
Java
// Java implementation to check if the // incoming edges in a vertex of directed // graph is equal to the vertex itself or not import java.util.*; class GFG{ // A utility function to // add an edge in an // directed graph static void add_edge(Vector<Integer> adj[], int x, int y) { adj[x].add(y); } // Function to check that given graph // in-degree value equal to vertex value static boolean Indegree(Vector<Integer> adj[], int v) { // Create array indeg // initialized to zero int indeg[] = new int [v]; // Traversing across all // vertex to compute // in degree value for ( int i = 0 ; i < v; i++) { for ( int j = 0 ; j < adj[i].size(); j++) { indeg[adj[i].get(j)]++; } } // Check in degree value // equal to vertex value for ( int i = 0 ; i < v; i++) { if (i == indeg[i]) continue ; else return false ; } return true ; } // Driver code public static void main(String[] args) { int v = 4 ; // To store adjacency list of graph @SuppressWarnings ( "unchecked" ) Vector<Integer> []adj = new Vector[v]; for ( int i = 0 ; i < adj.length; i++) adj[i] = new Vector<Integer>(); add_edge(adj, 0 , 1 ); add_edge(adj, 1 , 2 ); add_edge(adj, 0 , 2 ); add_edge(adj, 0 , 3 ); add_edge(adj, 1 , 3 ); add_edge(adj, 2 , 3 ); if (Indegree(adj, v)) System.out.print( "Yes" ); else System.out.print( "No" ); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 implementation to check if the # incoming edges in a vertex of directed # graph is equal to the vertex itself or not # A utility function to # add an edge in an # directed graph def add_edge(adj, x, y): adj[x] = adj[x] + [y] # Function to check that given graph # in-degree value equal to vertex value def Indegree(adj, v): # Create array indeg # initialized to zero indeg = [ 0 ] * v # Traversing across all # vertex to compute # in degree value for i in range (v): for j in range ( len (adj[i])): indeg[adj[i][j]] + = 1 # Check in degree value # equal to vertex value for i in range (v): if (i = = indeg[i]): continue else : return False return True # Driver code if __name__ = = '__main__' : v = 4 # To store adjacency list of graph adj = [[]] * 4 add_edge(adj, 0 , 1 ) add_edge(adj, 1 , 2 ) add_edge(adj, 0 , 2 ) add_edge(adj, 0 , 3 ) add_edge(adj, 1 , 3 ) add_edge(adj, 2 , 3 ) if (Indegree(adj, v)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by Shivam Singh |
C#
// C# implementation to check if the // incoming edges in a vertex of directed // graph is equal to the vertex itself or not using System; using System.Collections.Generic; class GFG{ // A utility function to // add an edge in an // directed graph static void add_edge(List< int > []adj, int x, int y) { adj[x].Add(y); } // Function to check that given graph // in-degree value equal to vertex value static bool Indegree(List< int > []adj, int v) { // Create array indeg // initialized to zero int []indeg = new int [v]; // Traversing across all // vertex to compute // in degree value for ( int i = 0; i < v; i++) { for ( int j = 0; j < adj[i].Count; j++) { indeg[adj[i][j]]++; } } // Check in degree value // equal to vertex value for ( int i = 0; i < v; i++) { if (i == indeg[i]) continue ; else return false ; } return true ; } // Driver code public static void Main(String[] args) { int v = 4; // To store adjacency list of graph List< int > []adj = new List< int >[v]; for ( int i = 0; i < adj.Length; i++) adj[i] = new List< int >(); add_edge(adj, 0, 1); add_edge(adj, 1, 2); add_edge(adj, 0, 2); add_edge(adj, 0, 3); add_edge(adj, 1, 3); add_edge(adj, 2, 3); if (Indegree(adj, v)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // JavaScript implementation to check if the // incoming edges in a vertex of directed // graph is equal to the vertex itself or not // A utility function to // add an edge in an // directed graph function add_edge(adj, x, y) { adj[x].push(y); } // Function to check that given graph // in-degree value equal to vertex value function Indegree(adj, v) { // Create array indeg // initialized to zero var indeg = Array(v).fill(0); // Traversing across all // vertex to compute // in degree value for ( var i = 0; i < v; i++) { for ( var j = 0; j < adj[i].length; j++) { indeg[adj[i][j]]++; } } // check in degree value // equal to vertex value for ( var i = 0; i < v; i++) { if (i == indeg[i]) continue ; else return false ; } return true ; } // Driver code var v = 4; // To store adjacency list of graph var adj = Array.from(Array(v), ()=> new Array()); add_edge(adj, 0, 1); add_edge(adj, 1, 2); add_edge(adj, 0, 2); add_edge(adj, 0, 3); add_edge(adj, 1, 3); add_edge(adj, 2, 3); if (Indegree(adj, v)) document.write( "Yes" ); else document.write( "No" ); </script> |
Yes
Time Complexity: O(V + E)
Auxiliary Space Complexity: O(V)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!