Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICheck if given Circles form a single Component

Check if given Circles form a single Component

Given a 2-D array A[][] of size N×3, where each element of the array consists of {x, y, r}, where x and y are coordinates of that circle and r is the radius of that circle, the task is to check all the circles form a single component where a component is the set of connected circles.

Note: Two circles are connected if they touch or intersect each other.

Examples:

Input: A[][] = {{0, 0, 2}, {0, 3, 3}, {0, 6, 1}, {1, 0, 1}}
Output: true
Explanation: All circles are connected to every other circle.

Input: A[][] = {{0, 0, 1}, {0, 3, 1}, {0, 4, 1}, {1, 0, 1}}
Output: false
Explanation: Circles at index 0 and 3 form a single component 
while circle 1 and 2 form separate component. 
Since there are multiple components, the output is false. 

Approach: The solution to the problem can be derived using the following idea

The idea is to construct a graph from the given input and check if corresponding vertices touch or intersect each other and in the end find that the graph forms a single connected component or not [i.e. if all the vertices can be visited starting from any vertex].

Following are the steps to implement the above approach:

  • For every circle in A, find the distance between their centers.
    • If the distance <= sum of radius
      • connect both the vertices representing these circles
  • Perform a DFS from a single node on the graph.
  • Now check in the visited array
    • If there is any unvisited vertex, return false.
  • Return true if there is no unvisited vertex.

Below is the code implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to create a graph from the
// array of the circles
vector<vector<int> > constructGraph(int Arr[][3], int n)
{
  vector<vector<int> > graph(n, vector<int>());
  for (int u = 0; u < n; u++) {
    for (int v = u + 1; v < n; v++) {
      int x1 = Arr[u][0];
      int y1 = Arr[u][1];
      int r1 = Arr[u][2];
      int x2 = Arr[v][0];
      int y2 = Arr[v][1];
      int r2 = Arr[v][2];
      double dist = sqrt((x1 - x2) * (x1 - x2)
                         + (y1 - y2) * (y1 - y2));
      if (r1 + r2 >= dist) {
        graph[u].push_back(v);
        graph[v].push_back(u);
      }
    }
  }
  return graph;
}
 
// Function to perform DFS on the graph
 
void dfsVisit(int v, vector<bool>& visited,
              vector<vector<int> > graph)
{
  visited[v] = true;
  for (auto nbr : graph[v]) {
    if (!visited[nbr]) {
      dfsVisit(nbr, visited, graph);
    }
  }
}
 
// Function to check whether the
// circle form a single component or not
bool isSingleComponent(int arr[][3], int n)
{
  vector<vector<int> > graph = constructGraph(arr, 4);
  vector<bool> visited(n, 0);
  dfsVisit(0, visited, graph);
  for (int i = 0; i < n; i++) {
    if (!visited[i])
      return false;
  }
  return true;
}
 
int main()
{
  int A[][3] = {
    { 0, 0, 2 }, { 0, 3, 3 }, { 0, 6, 1 }, { 1, 0, 1 }
  };
 
  // Function Call
  cout << (isSingleComponent(A, 4)) << endl;
  ;
}
 
// This code is contributed by garg28harsh.


Java




// Java program to implement the approach
 
import java.util.*;
 
public class GFG {
 
    // Function to create a graph from the
    // array of the circles
    static ArrayList<ArrayList<Integer> >
    constructGraph(int[][] Arr)
    {
        int n = Arr.length;
        ArrayList<ArrayList<Integer> > graph
            = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            graph.add(new ArrayList<>());
        }
        for (int u = 0; u < n; u++) {
            for (int v = u + 1; v < n; v++) {
                int x1 = Arr[u][0];
                int y1 = Arr[u][1];
                int r1 = Arr[u][2];
                int x2 = Arr[v][0];
                int y2 = Arr[v][1];
                int r2 = Arr[v][2];
                double dist
                    = Math.sqrt((x1 - x2) * (x1 - x2)
                                + (y1 - y2) * (y1 - y2));
                if (r1 + r2 >= dist) {
                    graph.get(u).add(v);
                    graph.get(v).add(u);
                }
            }
        }
        return graph;
    }
 
    // Function to perform DFS on the graph
    static void
    dfsVisit(int v, boolean[] visited,
             ArrayList<ArrayList<Integer> > graph)
    {
        visited[v] = true;
        for (Integer nbr : graph.get(v)) {
            if (!visited[nbr]) {
                dfsVisit(nbr, visited, graph);
            }
        }
    }
 
    // Function to check whether the
    // circle form a single component or not
    static boolean isSingleComponent(int[][] arr)
    {
        int n = arr.length;
        ArrayList<ArrayList<Integer> > graph
            = constructGraph(arr);
        boolean[] visited = new boolean[n];
        dfsVisit(0, visited, graph);
        for (int i = 0; i < n; i++) {
            if (!visited[i])
                return false;
        }
        return true;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int A[][] = { { 0, 0, 2 },
                      { 0, 3, 3 },
                      { 0, 6, 1 },
                      { 1, 0, 1 } };
 
        // Function Call
        System.out.println(isSingleComponent(A));
    }
}


Python3




import math
class GFG :
   
    # Function to create a graph from the
    # array of the circles
    @staticmethod
    def  constructGraph( Arr) :
        n = len(Arr)
        graph =  []
        i = 0
        while (i < n) :
            graph.append( [])
            i += 1
        u = 0
        while (u < n) :
            v = u + 1
            while (v < n) :
                x1 = Arr[u][0]
                y1 = Arr[u][1]
                r1 = Arr[u][2]
                x2 = Arr[v][0]
                y2 = Arr[v][1]
                r2 = Arr[v][2]
                dist = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))
                if (r1 + r2 >= dist) :
                    graph[u].append(v)
                    graph[v].append(u)
                v += 1
            u += 1
        return graph
       
    # Function to perform DFS on the graph
    @staticmethod
    def dfsVisit( v,  visited,  graph) :
        visited[v] = True
        for nbr in graph[v] :
            if (not visited[nbr]) :
                GFG.dfsVisit(nbr, visited, graph)
                 
    # Function to check whether the
    # circle form a single component or not
    @staticmethod
    def  isSingleComponent( arr) :
        n = len(arr)
        graph = GFG.constructGraph(arr)
        visited = [False] * (n)
        GFG.dfsVisit(0, visited, graph)
        i = 0
        while (i < n) :
            if (not visited[i]) :
                return False
            i += 1
        return True
       
    # Driver Code
    @staticmethod
    def main( args) :
        A = [[0, 0, 2], [0, 3, 3], [0, 6, 1], [1, 0, 1]]
         
        # Function Call
        print(GFG.isSingleComponent(A))
     
if __name__=="__main__":
    GFG.main([])
     
    # This code is contributed by aaityaburujwale.


C#




using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to create a graph from the
  // array of the circles
  static List<int>[] ConstructGraph(int[][] arr)
  {
    int n = arr.Length;
    var graph = new List<int>[ n ];
    for (int i = 0; i < n; i++) {
      graph[i] = new List<int>();
    }
    for (int u = 0; u < n; u++) {
      for (int v = u + 1; v < n; v++) {
        int x1 = arr[u][0];
        int y1 = arr[u][1];
        int r1 = arr[u][2];
        int x2 = arr[v][0];
        int y2 = arr[v][1];
        int r2 = arr[v][2];
        double dist
          = Math.Sqrt((x1 - x2) * (x1 - x2)
                      + (y1 - y2) * (y1 - y2));
        if (r1 + r2 >= dist) {
          graph[u].Add(v);
          graph[v].Add(u);
        }
      }
    }
    return graph;
  }
 
  // Function to perform DFS on the graph
  static void DfsVisit(int v, bool[] visited,
                       List<int>[] graph)
  {
    visited[v] = true;
    foreach(int nbr in graph[v])
    {
      if (!visited[nbr]) {
        DfsVisit(nbr, visited, graph);
      }
    }
  }
 
  // Function to check whether the
  // circle form a single component or not
  static bool IsSingleComponent(int[][] arr)
  {
    int n = arr.Length;
    var graph = ConstructGraph(arr);
    var visited = new bool[n];
    DfsVisit(0, visited, graph);
    for (int i = 0; i < n; i++) {
      if (!visited[i]) {
        return false;
      }
    }
    return true;
  }
 
  // Driver code
  static void Main(string[] args)
  {
    int[][] arr
      = { new[] { 0, 0, 2 }, new[] { 0, 3, 3 },
         new[] { 0, 6, 1 }, new[] { 1, 0, 1 } };
 
    // Function call
    Console.WriteLine(IsSingleComponent(arr));
  }
}
 
// This code is contributed by divyansh2212


Javascript




// Javascript program to implement the approach
 
// Function to create a graph from the
// array of the circles
function constructGraph(Arr, n) {
  let graph = new Array(n);
  for (let i = 0; i < n; i++) graph[i] = [];
  for (let u = 0; u < n; u++) {
    for (let v = u + 1; v < n; v++) {
      let x1 = Arr[u][0];
      let y1 = Arr[u][1];
      let r1 = Arr[u][2];
      let x2 = Arr[v][0];
      let y2 = Arr[v][1];
      let r2 = Arr[v][2];
      let dist = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
      if (r1 + r2 >= dist) {
        graph[u].push(v);
        graph[v].push(u);
      }
    }
  }
 
  return graph;
}
 
// Function to perform DFS on the graph
 
function dfsVisit(v, visited, graph) {
  visited[v] = true;
 
  for (let nbr of graph[v]) {
    if (!visited[nbr]) {
      dfsVisit(nbr, visited, graph);
    }
  }
}
 
// Function to check whether the
// circle form a single component or not
function isSingleComponent(arr, n) {
  let graph = constructGraph(arr, 4);
  let visited = new Array(n);
  for (let i = 0; i < n; i++) visited[i] = 0;
 
  dfsVisit(0, visited, graph);
  for (let i = 0; i < n; i++) {
    if (!visited[i]) return false;
  }
  return true;
}
 
let A = [
  [0, 0, 2],
  [0, 3, 3],
  [0, 6, 1],
  [1, 0, 1],
];
 
// Function Call
console.log(isSingleComponent(A, 4));
 
// This code is contributed by ishankhandelwals.


Output

true

Time Complexity: O(N2), since we are using two loops to traverse all the elements in the given array hence the time taken is quadratic
Auxiliary Space:  O(N2), since we are creating an extra graph of size n*n so the space takes is quadratic

Last Updated :
27 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments