Sunday, October 19, 2025
HomeData Modelling & AICheck if each element of an Array is the Sum of any...

Check if each element of an Array is the Sum of any two elements of another Array

Given two arrays A[] and B[] consisting of N integers, the task is to check if each element of array B[] can be formed by adding any two elements of array A[]. If it is possible, then print “Yes”. Otherwise, print “No”.

Examples:

Input: A[] = {3, 5, 1, 4, 2}, B[] = {3, 4, 5, 6, 7} 
Output: Yes 
Explanation: 
B[0] = 3 = (1 + 2) = A[2] + A[4], 
B[1] = 4 = (1 + 3) = A[2] + A[0], 
B[2] = 5 = (3 + 2) = A[0] + A[4], 
B[3] = 6 = (2 + 4) = A[4] + A[3], 
B[4] = 7 = (3 + 4) = A[0] + A[3]

Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 2, 3, 4, 5} 
Output: No 
 

Approach: 
Follow the steps below to solve the problem: 

  • Store each element of B[] in a Set.
  • For each pair of indices (i, j) of the array A[], check if A[i] + A[j] is present in the set. If found to be true, remove A[i] + A[j] from the set.
  • If the set becomes empty, then print “Yes”. Otherwise, print “No”.

Below is the implementation of the above approach: 

C++




// C++ program to implement
// the above approach
#include 
using namespace std;
 
// Function to check if each element
// of B[] can be formed by adding two
// elements of array A[]
string checkPossible(int A[], int B[], int n)
{
    // Store each element of B[]
    unordered_set values;
 
    for (int i = 0; i < n; i++) {
        values.insert(B[i]);
    }
 
    // Traverse all possible pairs of array
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
 
            // If A[i] + A[j] is present in
            // the set
            if (values.find(A[i] + A[j])
                != values.end()) {
 
                // Remove A[i] + A[j] from the set
                values.erase(A[i] + A[j]);
 
                if (values.empty())
                    break;
            }
        }
    }
 
    // If set is empty
    if (values.size() == 0)
        return "Yes";
 
    // Otherwise
    else
        return "No";
}
 
// Driver Code
int main()
{
    int N = 5;
 
    int A[] = { 3, 5, 1, 4, 2 };
    int B[] = { 3, 4, 5, 6, 7 };
 
    cout << checkPossible(A, B, N);
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG{
     
// Function to check if each element
// of B[] can be formed by adding two
// elements of array A[]
static String checkPossible(int A[], int B[],
                            int n)
{
     
    // Store each element of B[]
    Set values = new HashSet();
 
    for(int i = 0; i < n; i++)
    {
        values.add(B[i]);
    }
 
    // Traverse all possible pairs of array
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
 
            // If A[i] + A[j] is present in
            // the set
            if (values.contains(A[i] + A[j]))
            {
                 
                // Remove A[i] + A[j] from the set
                values.remove(A[i] + A[j]);
 
                if (values.size() == 0)
                    break;
            }
        }
    }
 
    // If set is empty
    if (values.size() == 0)
        return "Yes";
 
    // Otherwise
    else
        return "No";
}
 
// Driver Code
public static void main(String args[])
{
    int N = 5;
    int A[] = { 3, 5, 1, 4, 2 };
    int B[] = { 3, 4, 5, 6, 7 };
     
    System.out.print(checkPossible(A, B, N));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to implement
# the above approach
 
# Function to check if each element
# of B[] can be formed by adding two
# elements of array A[]
def checkPossible(A, B, n):
 
    # Store each element of B[]
    values = set([])
 
    for i in range (n):
        values.add(B[i])
     
    # Traverse all possible
    # pairs of array
    for i in range (n):
        for j in range (n):
 
            # If A[i] + A[j] is present in
            # the set
            if ((A[i] + A[j]) in values):
 
                # Remove A[i] + A[j] from the set
                values.remove(A[i] + A[j])
 
                if (len(values) == 0):
                    break
 
    # If set is empty
    if (len(values) == 0):
        return "Yes"
 
    # Otherwise
    else:
        return "No"
 
# Driver Code
if __name__ == "__main__":
   
  N = 5
 
  A = [3, 5, 1, 4, 2]
  B = [3, 4, 5, 6, 7]
 
  print (checkPossible(A, B, N))
 
# This code is contributed by Chitranayal


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
     
// Function to check if each element
// of []B can be formed by adding two
// elements of array []A
static String checkPossible(int []A, int []B,
                            int n)
{
 
  // Store each element of []B
  HashSet values = new HashSet();
 
  for(int i = 0; i < n; i++)
  {
    values.Add(B[i]);
  }
 
  // Traverse all possible pairs of array
  for(int i = 0; i < n; i++)
  {
    for(int j = 0; j < n; j++)
    {
      // If A[i] + A[j] is present in
      // the set
      if (values.Contains(A[i] + A[j]))
      {                
        // Remove A[i] + A[j] from the set
        values.Remove(A[i] + A[j]);
 
        if (values.Count == 0)
          break;
      }
    }
  }
 
  // If set is empty
  if (values.Count == 0)
    return "Yes";
 
  // Otherwise
  else
    return "No";
}
 
// Driver Code
public static void Main(String []args)
{
  int N = 5;
  int []A = {3, 5, 1, 4, 2};
  int []B = {3, 4, 5, 6, 7};
 
  Console.Write(checkPossible(A, B, N));
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to check if each element
// of B[] can be formed by adding two
// elements of array A[]
function checkPossible(A, B, n)
{
     
    // Store each element of B[]
    var values = new Set();
 
    for(var i = 0; i < n; i++)
    {
        values.add(B[i]);
    }
 
    // Traverse all possible pairs of array
    for(var i = 0; i < n; i++)
    {
        for(var j = 0; j < n; j++)
        {
             
            // If A[i] + A[j] is present in
            // the set
            if (values.has(A[i] + A[j]))
            {
                 
                // Remove A[i] + A[j] from the set
                values.delete(A[i] + A[j]);
 
                if (values.size == 0)
                    break;
            }
        }
    }
 
    // If set is empty
    if (values.size == 0)
        return "Yes";
 
    // Otherwise
    else
        return "No";
}
 
// Driver Code
var N = 5;
var A = [ 3, 5, 1, 4, 2 ];
var B = [ 3, 4, 5, 6, 7 ];
 
document.write(checkPossible(A, B, N));
 
// This code is contributed by itsok
 
</script>


Output: 

Yes

 

Time Complexity: O(N2
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS