Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AICheck if any level of a perfect Binary Tree forms a Palindrome

Check if any level of a perfect Binary Tree forms a Palindrome

Given a perfect binary tree consisting of N nodes, the task is to check if the number formed by the nodes in any level of the tree forms a palindrome number or not. The root node is not considered to be a palindrome.
Examples:

Input:  Tree[][]: 
                5

              /  \

            3      3  

          / \    /   \

        6   2  3      6

Output: Yes
Explanation: 3 and 3 makes a number 33 which is a palindrome
 

Input: Tree[][]:
                      6

                    / \

                3       4  

             /   \      /   \

          6      2     1    6

Output: False 
Explanation: There is no number formed at any level which is palindrome.

 

Approach: The task can be solved using a breadth-first search over the tree. Follow the below steps to solve the problem:

  • Start traversing the tree from the root node
  • From the next level onwards, maintain the number formed by concatenating all the nodes at that level
  • Check if it is a palindrome or not

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
struct Node {
    Node* left;
    Node* right;
    int hd;
    int data;
};
 
// Function to create a new node
Node* newNode(int key)
{
    Node* node = new Node();
    node->left = node->right = NULL;
    node->data = key;
    return node;
}
 
// Function to check if the number is
// palindrome or not
bool chkp(int n)
{
    string s = to_string(n);
    string k = s;
    reverse(s.begin(), s.end());
    if (k == s)
        return true;
    return false;
}
 
// Function to find whether any level
// forms a palindromic number
bool chklevel(Node* root)
{
 
    queue<Node*> q;
    q.push(root);
    int k = 1;
    int p = k;
    int n = 0;
 
    // Using breadth-first-search(bfs)
    while (!q.empty()) {
 
        // if new level start
        if (p == 0) {
 
            // If not the first level
            if (k != 1)
 
                // Checking if the number
                // at current level
                // is palindrome
                if (chkp(n)) {
                    return true;
                }
 
            // Entering new level
            k *= 2;
            p = k;
            n = 0;
        }
 
        Node* t = q.front();
        q.pop();
        n = n * 10 + t->data;
        p--;
        if (t->left) {
            q.push(t->left);
        }
        if (t->right) {
            q.push(t->right);
        }
    }
 
    // If number at the last
    // level is palindrome
    if (chkp(n))
        return true;
    return false;
}
 
// Driver Code
int main()
{
    // Perfect Binary Tree formation
    Node* root = newNode(5);
    root->left = newNode(3);
    root->right = newNode(3);
    root->left->left = newNode(6);
    root->left->right = newNode(2);
    root->right->right = newNode(6);
    root->right->left = newNode(3);
    if (chklevel(root))
        cout << "Yes";
    else
        cout << "No";
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
  static class Node {
    Node left;
    Node right;
    int hd;
    int data;
  };
 
  // Function to create a new node
  static Node newNode(int key)
  {
    Node node = new Node();
    node.left = node.right = null;
    node.data = key;
    return node;
  }
  static String reverse(String input) {
    char[] a = input.toCharArray();
    int l, r = a.length - 1;
    for (l = 0; l < r; l++, r--) {
      char temp = a[l];
      a[l] = a[r];
      a[r] = temp;
    }
    return String.valueOf(a);
  }
  // Function to check if the number is
  // palindrome or not
  static boolean chkp(int n)
  {
    String s = String.valueOf(n);
    String k = s;
    s=reverse(s);
    if (k.equals(s))
      return true;
    return false;
  }
 
  // Function to find whether any level
  // forms a palindromic number
  static boolean chklevel(Node root)
  {
 
    Queue<Node> q = new LinkedList<>();
    q.add(root);
    int k = 1;
    int p = k;
    int n = 0;
 
    // Using breadth-first-search(bfs)
    while (!q.isEmpty()) {
 
      // if new level start
      if (p == 0) {
 
        // If not the first level
        if (k != 1)
 
          // Checking if the number
          // at current level
          // is palindrome
          if (chkp(n)) {
            return true;
          }
 
        // Entering new level
        k *= 2;
        p = k;
        n = 0;
      }
 
      Node t = q.peek();
      q.remove();
      n = n * 10 + t.data;
      p--;
      if (t.left!=null) {
        q.add(t.left);
      }
      if (t.right!=null) {
        q.add(t.right);
      }
    }
 
    // If number at the last
    // level is palindrome
    if (chkp(n))
      return true;
    return false;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
     
    // Perfect Binary Tree formation
    Node root = newNode(5);
    root.left = newNode(3);
    root.right = newNode(3);
    root.left.left = newNode(6);
    root.left.right = newNode(2);
    root.right.right = newNode(6);
    root.right.left = newNode(3);
    if (chklevel(root))
      System.out.print("Yes");
    else
      System.out.print("No");
  }
}
 
// This code is contributed by shikhasingrajput


Python3




# Python code for the above approach
class Node:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.hd = 0
        self.data = key
 
# Function to create a  node
 
# Function to check if the number is
# palindrome or not
def chkp(n):
    s = str(n)
    k = s[::-1]
 
    if (k == s):
        return True
    return False
 
# Function to find whether any level
# forms a palindromic number
def chklevel(root):
 
    q = []
    q.append(root)
    k = 1
    p = k
    n = 0
 
    # Using breadth-first-search(bfs)
    while (len(q) != 0):
 
        # if new level start
        if (p == 0):
 
            # If not the first level
            if (k != 1):
 
                # Checking if the number
                # at current level
                # is palindrome
                if (chkp(n)):
                    return True
 
            # Entering new level
            k *= 2
            p = k
            n = 0
 
        t = q[0]
        q.pop(0)
        n = n * 10 + t.data
        p -= 1
        if (t.left != None):
            q.append(t.left)
 
        if (t.right != None):
            q.append(t.right)
 
    # If number at the last
    # level is palindrome
    if (chkp(n)):
        return True
    return False
 
# Driver Code
 
# Perfect Binary Tree formation
root = Node(5)
root.left = Node(3)
root.right = Node(3)
root.left.left = Node(6)
root.left.right = Node(2)
root.right.right = Node(6)
root.right.left = Node(3)
if (chklevel(root)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
 
  class Node {
    public Node left;
    public Node right;
    public int hd;
    public int data;
  };
 
  // Function to create a new node
  static Node newNode(int key)
  {
    Node node = new Node();
    node.left = node.right = null;
    node.data = key;
    return node;
  }
  static String reverse(String input) {
    char[] a = input.ToCharArray();
    int l, r = a.Length - 1;
    for (l = 0; l < r; l++, r--) {
      char temp = a[l];
      a[l] = a[r];
      a[r] = temp;
    }
    return String.Join("",a);
  }
   
  // Function to check if the number is
  // palindrome or not
  static bool chkp(int n)
  {
    String s = String.Join("",n);
    String k = s;
    s=reverse(s);
    if (k.Equals(s))
      return true;
    return false;
  }
 
  // Function to find whether any level
  // forms a palindromic number
  static bool chklevel(Node root)
  {
 
    Queue<Node> q = new Queue<Node>();
    q.Enqueue(root);
    int k = 1;
    int p = k;
    int n = 0;
 
    // Using breadth-first-search(bfs)
    while (q.Count!=0) {
 
      // if new level start
      if (p == 0) {
 
        // If not the first level
        if (k != 1)
 
          // Checking if the number
          // at current level
          // is palindrome
          if (chkp(n)) {
            return true;
          }
 
        // Entering new level
        k *= 2;
        p = k;
        n = 0;
      }
 
      Node t = q.Peek();
      q.Dequeue();
      n = n * 10 + t.data;
      p--;
      if (t.left!=null) {
        q.Enqueue(t.left);
      }
      if (t.right!=null) {
        q.Enqueue(t.right);
      }
    }
 
    // If number at the last
    // level is palindrome
    if (chkp(n))
      return true;
    return false;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
     
    // Perfect Binary Tree formation
    Node root = newNode(5);
    root.left = newNode(3);
    root.right = newNode(3);
    root.left.left = newNode(6);
    root.left.right = newNode(2);
    root.right.right = newNode(6);
    root.right.left = newNode(3);
    if (chklevel(root))
      Console.Write("Yes");
    else
      Console.Write("No");
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
        // JavaScript code for the above approach
 
 
        class Node {
            constructor(key) {
                this.left = null;
                this.right = null;
                this.hd = 0;
                this.data = key;
            }
        };
 
        // Function to create a new node
 
 
        // Function to check if the number is
        // palindrome or not
        function chkp(n) {
            let s = (n).toString();
            s = s.split('');
 
            let k = [...s];
            k = k.join('');
            s = s.reverse();
            s = s.join('')
 
            if (k == s)
                return true;
            return false;
        }
 
        // Function to find whether any level
        // forms a palindromic number
        function chklevel(root) {
 
            let q = [];
            q.push(root);
            let k = 1;
            let p = k;
            let n = 0;
 
            // Using breadth-first-search(bfs)
            while (q.length != 0) {
 
                // if new level start
                if (p == 0) {
 
                    // If not the first level
                    if (k != 1)
 
                        // Checking if the number
                        // at current level
                        // is palindrome
                        if (chkp(n)) {
                            return true;
                        }
 
                    // Entering new level
                    k *= 2;
                    p = k;
                    n = 0;
                }
 
                let t = q[0];
                q.shift();
                n = n * 10 + t.data;
                p--;
                if (t.left != null) {
                    q.push(t.left);
                }
                if (t.right != null) {
                    q.push(t.right);
                }
            }
 
            // If number at the last
            // level is palindrome
            if (chkp(n))
                return true;
            return false;
        }
 
        // Driver Code
 
        // Perfect Binary Tree formation
        let root = new Node(5);
        root.left = new Node(3);
        root.right = new Node(3);
        root.left.left = new Node(6);
        root.left.right = new Node(2);
        root.right.right = new Node(6);
        root.right.left = new Node(3);
        if (chklevel(root))
            document.write("Yes");
        else
            document.write("No");
 
 
       // This code is contributed by Potta Lokesh
    </script>


Output

Yes

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
08 Mar, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments