Monday, January 13, 2025
Google search engine
HomeData Modelling & AICheck if an Array can be converted to other by replacing pairs...

Check if an Array can be converted to other by replacing pairs with GCD

Given arrays A[] and B[] each of length N and A[i] has all the elements from 1 to N, the task is to check if it is possible to convert A[] to B[] by replacing any pair of A[] with their GCD.

Examples:

Input: N = 2, A[] = {1, 2}, B[] = {1, 1}
Output: YES 
Explanation:
First Operation – For A[], choose i = 0 and j = 1. GCD(A[0], A[1]) = GCD(1, 2) = 1. Replace both the elements with GCD = 1. So A[] = {1, 1}.

Input: N = 3, A[] = {1, 2, 3}, B[] = {1, 2, 2}
Output: NO
Explanation: It can be verify that it’s not possible to convert A[] to B[] by using given operation. 

Approach: Implement the idea below to solve the problem

The problem is observation based and can be solved by calculating GCD of A[i] and B[i] for each index. It should be noted that if B[i]>A[i] at any index, then it is impossible to change A[i] as B[i].

So, This idea gives us approach if GCD(A[i], B[i]) = B[i], Then it is possible to convert A[i] to B[i] at that index, else not possible.  

Follow the steps mentioned below to implement the idea:

  • Make a boolean variable flag and initialize it to true.
  • Run a loop from i = 0 to N-1: 
    • If GCD(A[i], B[i])=B[i] then continue the loop. 
    • Else mark the flag as false and break the loop.
  • If the flag is true then output YES else NO. 

Below is the implementation of the above approach.

C++




// C++ code
 
#include <bits/stdc++.h>
using namespace std;
 
// Euclidean algorithm to find GCD(a, b),
// where a and b are two input arguments
int GCD(int a, int b)
{
  return b == 0 ? a : GCD(b, a % b);
}
 
// Function to check conversion
bool conversionChecker(int N, int B[])
{
   
  // Flag which will be false if B[i]>A[i]
  // at any index i
  bool flag = true;
 
  // Loop for traversing on B[]
  for (int i = 0; i < N; i++) {
    if (GCD((i + 1), B[i]) == B[i]) {
      continue;
    }
    else {
      flag = false;
      break;
    }
  }
 
  // Returning true/false stored in flag
  return flag;
}
 
 
int main() {
 
  // Testcase 1
  int N = 4;
 
  // Input array B[], We don't need array A[]
  // Because it can be achieved by traversing on loop
  // from 1 to N As A[] is an array of {1, 2, . . .,
  // N}
  int B1[] = { 1, 2, 3, 2 };
 
  // Function call for checking if conversion is
  // possible or not
  cout<<(conversionChecker(N, B1) ? "YES" : "NO")<<endl;
 
  // Testcase 2
  N = 5;
  int B2[] = { 2, 4, 5, 6, 7 };
  cout<<(conversionChecker(N, B2) ? "YES" : "NO")<<endl;
 
  return 0;
}
 
// This code is contributed by ksam24000


Java




// Java code to implement the approach
 
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
    // Driver code
    public static void main(String[] args)
    {
        // Testcase 1
        int N = 4;
 
        // Input array B[], We don't need array A[]
        // Because it can be achieved by traversing on loop
        // from 1 to N As A[] is an array of {1, 2, . . .,
        // N}
        int B1[] = { 1, 2, 3, 2 };
 
        // Function call for checking if conversion is
        // possible or not
        System.out.println(conversionChecker(N, B1) ? "YES"
                                                    : "NO");
        // Testcase 2
        N = 5;
        int B2[] = { 2, 4, 5, 6, 7 };
        System.out.println(conversionChecker(N, B2) ? "YES"
                                                    : "NO");
        ;
    }
 
    // Function to check conversion
    static boolean conversionChecker(int N, int B[])
    {
        // Flag which will be false if B[i]>A[i]
        // at any index i
        boolean flag = true;
 
        // Loop for traversing on B[]
        for (int i = 0; i < N; i++) {
            if (GCD((i + 1), B[i]) == B[i]) {
                continue;
            }
            else {
                flag = false;
                break;
            }
        }
 
        // Returning true/false stored in flag
        return flag;
    }
 
    // Euclidean algorithm to find GCD(a, b),
    // where a and b are two input arguments
    static int GCD(int a, int b)
    {
        return b == 0 ? a : GCD(b, a % b);
    }
}


Python3




# Python code to implement the approach
 
# Euclidean algorithm to find GCD(a, b),
# where a and b are two input arguments
def GCD(a, b):
    return a if b == 0 else GCD(b, a % b)
 
# Function to check conversion
def conversionChecker(N, B):
    # Flag which will be false if B[i]>A[i]
    # at any index i
    flag = True
 
    # loop for traversing on B[]
    for i in range(N):
        if(GCD((i + 1), B[i]) == B[i]):
            continue
        else:
            flag = False
            break
 
    # Returning true/false stored in flag
    return flag
 
 
# Testcase 1
N = 4
# Input array B[], We don't need array A[]
# Because it can be achieved by traversing on loop
# from 1 to N As A[] is an array of {1, 2, . . .,
# N}
B1 = [1, 2, 3, 2]
# Function call for checking if conversion is
# possible or not
print("YES" if conversionChecker(N, B1) else "NO")
 
# Testcase 2
N = 5
B2 = [2, 4, 5, 6, 7]
print("YES" if conversionChecker(N, B2) else "NO")
 
# This code is contributed by lokeshmvs21.


C#




// C# code to implement the approach
 
using System;
 
public class GFG {
 
    static public void Main()
    {
 
        // Testcase 1
        int N = 4;
 
        // Input array B[], We don't need array A[]
        // Because it can be achieved by traversing on loop
        // from 1 to N As A[] is an array of {1, 2, . . .,
        // N}
        int[] B1 = { 1, 2, 3, 2 };
 
        // Function call for checking if conversion is
        // possible or not
        Console.WriteLine(conversionChecker(N, B1) ? "YES"
                                                   : "NO");
 
        // Testcase 2
        N = 5;
        int[] B2 = { 2, 4, 5, 6, 7 };
        Console.WriteLine(conversionChecker(N, B2) ? "YES"
                                                   : "NO");
    }
 
    // Function to check conversion
    static bool conversionChecker(int N, int[] B)
    {
        // Flag which will be false if B[i]>A[i]
        // at any index i
        bool flag = true;
 
        // Loop for traversing on B[]
        for (int i = 0; i < N; i++) {
            if (GCD((i + 1), B[i]) == B[i]) {
                continue;
            }
            else {
                flag = false;
                break;
            }
        }
 
        // Returning true/false stored in flag
        return flag;
    }
 
    // Euclidean algorithm to find GCD(a, b),
    // where a and b are two input arguments
    static int GCD(int a, int b)
    {
        return b == 0 ? a : GCD(b, a % b);
    }
}
 
// This code is contributed by lokesh


Javascript




// Javascript code
 
// Euclidean algorithm to find GCD(a, b),
// where a and b are two input arguments
function GCD(a, b)
{
    return b == 0 ? a : GCD(b, a % b);
}
 
// Function to check conversion
function conversionChecker(N, B)
{
   
  // Flag which will be false if B[i]>A[i]
  // at any index i
  let flag = true;
 
  // Loop for traversing on B[]
  for (let i = 0; i < N; i++) {
    if (GCD((i + 1), B[i]) == B[i]) {
      continue;
    }
    else {
      flag = false;
      break;
    }
  }
 
  // Returning true/false stored in flag
  return flag;
}
 
 
  let N = 4;
 
  // Input array B[], We don't need array A[]
  // Because it can be achieved by traversing on loop
  // from 1 to N As A[] is an array of {1, 2, . . .,
  // N}
  let B1 = [1, 2, 3, 2 ];
 
  // Function call for checking if conversion is
  // possible or not
  console.log(conversionChecker(N, B1) ? "YES" : "NO");
 
  // Testcase 2
  N = 5;
  let B2 = [2, 4, 5, 6, 7 ];
  console.log(conversionChecker(N, B2) ? "YES" : "NO");
 
// This code is contributed by poojaagarwal2


Output

YES
NO

Time Complexity: O(N * logM), Where M is the max element of B[].
Auxiliary Space: O(1)

Efficient Approach:

In this approach, We don’t need to calculate GCD at each index, Which will save a little bit of time. For A[i] and B[i], There are 3 possible cases. Which are discussed below:

  • If B[i] = A[i]: In such indices, We don’t need to perform the operation, Because A[i] is already equal to B[i].
  • If B[i] < A[i]: In this case, A[i] can be converted to B[i] only and only if A[i] % B[i] = 0. Formally B[i] is a perfect divisor of A[i].
  • If B[i] > A[i]: In this case, it is impossible to convert A[i] as B[i].

Follow the steps mentioned below to implement the idea:

  • Make a boolean variable flag and initialize it to true.
  • Run a loop from i = 0 to N-1:
    • If A[i] and B[i] are equal, then continue the loop.
    • Else if B[i] < A[i], then continue only if B[i] perfectly divides A[i].
    • Else mark flag as false and break the loop.
  •        3. If flag is true output YES else NO.    

Code to implement the approach:

C++




#include <cstring>
#include <iostream>
 
using namespace std;
 
// Function to check conversion
bool conversionChecker(int N, int B[])
{
  // Flag which will be false if B[i]>A[i] at any
  // index i
  bool flag = true;
 
  // Loop for traversing on B[]
  for (int i = 0; i < N; i++) {
 
    // Condition when A[i] is already equal to B[i]
    if (B[i] == (i + 1)) {
      continue;
    }
 
    // Condition when B[i] is smaller than A[i] and
    // A[i] can be converted to B[i] only and only
    // if A[i]%B[i]==0
    else if (B[i] < (i + 1) && (i + 1) % B[i] == 0) {
      continue;
    }
 
    // Else it will not possible to convert
    // A[i] to B[i]
    else {
 
      // Marking flag as false
      flag = false;
 
      // Breaking loop
      break;
    }
  }
 
  // Returning true/false stored in flag
  return flag;
}
 
// Euclidean algorithm to find GCD(a, b),
// where a and b are two input arguments
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
 
int main()
{
  // Testcase 1
  int N = 4;
  // Input array B[], We don't need array A[]
  // Because it can be achieved by traversing on loop
  // from 1 to N As A[] is an array of {1, 2 . . . N}
  int B1[] = { 1, 2, 3, 2 };
 
  // Function call for checking if conversion is
  // possible or not
  cout << (conversionChecker(N, B1) ? "YES" : "NO")
    << endl;
 
  // Testcase2
  N = 6;
  int B2[] = { 4, 6, 9, 1, 0, 5 };
 
  // Function call for checking if conversion is
  // possible or not
  cout << (conversionChecker(N, B2) ? "YES" : "NO")
    << endl;
 
  return 0;
}
 
// This code is contributed by akashish__


Java




// Java code to implement the approach
 
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
    // Driver Function
    public static void main(String[] args)
    {
        // Testcase 1
        int N = 4;
 
        // Input array B[], We don't need array A[]
        // Because it can be achieved by traversing on loop
        // from 1 to N As A[] is an array of {1, 2 . . . N}
        int B1[] = { 1, 2, 3, 2 };
 
        // Function call for checking if conversion is
        // possible or not
        System.out.println(conversionChecker(N, B1) ? "YES"
                                                    : "NO");
        // Testcase2
        N = 6;
        int B2[] = { 4, 6, 9, 1, 0, 5 };
 
        // Function call for checking if conversion is
        // possible or not
        System.out.println(conversionChecker(N, B2) ? "YES"
                                                    : "NO");
    }
 
    // Function to check conversion
    static boolean conversionChecker(int N, int B[])
    {
 
        // Flag which will be false if B[i]>A[i] at any
        // index i
        boolean flag = true;
 
        // Loop for traversing on B[]
        for (int i = 0; i < N; i++) {
 
            // Condition when A[i] is already equal to B[i]
            if (B[i] == (i + 1)) {
                continue;
            }
 
            // Condition when B[i] is smaller than A[i] and
            // A[i] can be converted to B[i] only and only
            // if A[i]%B[i]==0
            else if (B[i] < (i + 1)
                     && (i + 1) % B[i] == 0) {
                continue;
            }
 
            // Else it will not possible to convert
            // A[i] to B[i]
            else {
 
                // Marking flag as false
                flag = false;
 
                // Breaking loop
                break;
            }
        }
 
        // Returning true/false stored in flag
        return flag;
    }
 
    // Euclidean algorithm to find GCD(a, b),
    // where a and b are two input arguments
    static int GCD(int a, int b)
    {
        return b == 0 ? a : GCD(b, a % b);
    }
}


Python3




# Python code for the above approach
 
# Function to check conversion
def conversionChecker(N, B):
   
    # Flag which will be false if B[i]>A[i] at any
    # index i
    flag = True
     
    # Loop for traversing on B[]
    for i in range(N):
       
        # Condition when A[i] is already equal to B[i]
        if B[i] == (i + 1):
            continue
             
        # Condition when B[i] is smaller than A[i] and
        # A[i] can be converted to B[i] only and only
        # if A[i]%B[i]==0
        elif (B[i] < (i + 1) and (i + 1) % B[i] == 0):
            continue
             
        # Else it will not possible to convert
        # A[i] to B[i]
        else:
            # Marking flag as false
            flag = False
            # Breaking loop
            break
             
    # Returning true/false stored in flag
    return flag
 
# Euclidean algorithm to find GCD(a, b),
# where a and b are two input arguments
def GCD(a, b):
    return a if b == 0 else GCD(b, a % b)
 
# Testcase 1
N = 4
 
# Input array B[], We don't need array A[]
# Because it can be achieved by traversing on loop
# from 1 to N As A[] is an array of {1, 2 . . . N}
B1 = [1, 2, 3, 2]
 
# Function call for checking if conversion is
# possible or not
if (conversionChecker(N, B1) is True):
  print("YES")
else:
  print("NO")
 
# Testcase2
N = 6;
B2 = [4, 6, 9, 1, 0, 5];
 
# Function call for checking if conversion is
# possible or not
if (conversionChecker(N, B2) is True):
  print("YES")
else:
  print("NO")
 
# This code is contributed by akashish__


C#




// C# code to implement the approach
using System;
 
class GFG {
 
  // Driver Function
  public static void Main(string[] args)
  {
    // Testcase 1
    int N = 4;
 
    // Input array B[], We don't need array A[]
    // Because it can be achieved by traversing on loop
    // from 1 to N As A[] is an array of {1, 2 . . . N}
    int[] B1 = { 1, 2, 3, 2 };
 
    // Function call for checking if conversion is
    // possible or not
    Console.WriteLine(conversionChecker(N, B1) ? "YES"
                      : "NO");
    // Testcase2
    N = 6;
    int[] B2 = { 4, 6, 9, 1, 0, 5 };
 
    // Function call for checking if conversion is
    // possible or not
    Console.WriteLine(conversionChecker(N, B2) ? "YES"
                      : "NO");
  }
 
  // Function to check conversion
  static bool conversionChecker(int N, int[] B)
  {
 
    // Flag which will be false if B[i]>A[i] at any
    // index i
    bool flag = true;
 
    // Loop for traversing on B[]
    for (int i = 0; i < N; i++) {
 
      // Condition when A[i] is already equal to B[i]
      if (B[i] == (i + 1)) {
        continue;
      }
 
      // Condition when B[i] is smaller than A[i] and
      // A[i] can be converted to B[i] only and only
      // if A[i]%B[i]==0
      else if (B[i] < (i + 1)
               && (i + 1) % B[i] == 0) {
        continue;
      }
 
      // Else it will not possible to convert
      // A[i] to B[i]
      else {
 
        // Marking flag as false
        flag = false;
 
        // Breaking loop
        break;
      }
    }
 
    // Returning true/false stored in flag
    return flag;
  }
 
  // Euclidean algorithm to find GCD(a, b),
  // where a and b are two input arguments
  static int GCD(int a, int b)
  {
    return b == 0 ? a : GCD(b, a % b);
  }
}
 
// This code is contributed by karandeep1234


Javascript




   // JavaScript code for the above approach
 
   // Function to check conversion
   function conversionChecker(N, B) {
 
     // Flag which will be false if B[i]>A[i] at any
     // index i
     let flag = true;
 
     // Loop for traversing on B[]
     for (let i = 0; i < N; i++) {
 
       // Condition when A[i] is already equal to B[i]
       if (B[i] == (i + 1)) {
         continue;
       }
 
       // Condition when B[i] is smaller than A[i] and
       // A[i] can be converted to B[i] only and only
       // if A[i]%B[i]==0
       else if (B[i] < (i + 1)
         && (i + 1) % B[i] == 0) {
         continue;
       }
 
       // Else it will not possible to convert
       // A[i] to B[i]
       else {
 
         // Marking flag as false
         flag = false;
 
         // Breaking loop
         break;
       }
     }
 
     // Returning true/false stored in flag
     return flag;
   }
 
   // Euclidean algorithm to find GCD(a, b),
   // where a and b are two input arguments
   function GCD(a, b) {
     return b == 0 ? a : GCD(b, a % b);
   }
 
   // Driver Function
 
   // Testcase 1
   let N = 4;
 
   // Input array B[], We don't need array A[]
   // Because it can be achieved by traversing on loop
   // from 1 to N As A[] is an array of {1, 2 . . . N}
   let B1 = [1, 2, 3, 2];
 
   // Function call for checking if conversion is
   // possible or not
   console.log(conversionChecker(N, B1) ? "YES"
     : "NO");
   console.log('<br>')
   // Testcase2
   N = 6;
   let B2 = [4, 6, 9, 1, 0, 5];
 
   // Function call for checking if conversion is
   // possible or not
   console.log(conversionChecker(N, B2) ? "YES"
     : "NO");
 
// This code is contributed by Potta Lokesh


Output

YES
NO

Time Complexity: O(N)
Auxiliary Space: O(1)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
14 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments