Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AICheck if all the elements can be made of same parity by...

Check if all the elements can be made of same parity by inverting adjacent elements

Given a binary matrix. In a single operation, you are allowed to choose two adjacent elements and invert their parity. The operation can be performed any number of times. Write a program to check if all the elements of the array can be converted into a single parity. 
Examples: 
 

Input: a[] = {1, 0, 1, 1, 0, 1} 
Output: Yes 
Invert 2nd and 3rd elements to get {1, 1, 0, 1, 0, 1} 
Invert 3rd and 4th elements to get {1, 1, 1, 0, 0, 1} 
Invert 4th and 5th elements to get {1, 1, 1, 1, 1, 1}
Input: a[] = {1, 1, 1, 0, 0, 0} 
Output: No 
 

 

Approach: Since only adjacent elements are needed to be flipped, hence the count of parities will give the answer to the question. Only even number of elements are flipped at a time, so if both the parity’s count is odd then it is not possible to make all the parity same else it is possible.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if parity
// can be made same or not
bool flipsPossible(int a[], int n)
{
 
    int count_odd = 0, count_even = 0;
 
    // Iterate and count the parity
    for (int i = 0; i < n; i++) {
 
        // Odd
        if (a[i] & 1)
            count_odd++;
 
        // Even
        else
            count_even++;
    }
 
    // Condition check
    if (count_odd % 2 && count_even % 2)
        return false;
 
    else
        return true;
}
 
// Drivers code
int main()
{
    int a[] = { 1, 0, 1, 1, 0, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    if (flipsPossible(a, n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java implementation of the approach
public class GFG
{
     
    // Function to check if parity
    // can be made same or not
    static boolean flipsPossible(int []a, int n)
    {
     
        int count_odd = 0, count_even = 0;
     
        // Iterate and count the parity
        for (int i = 0; i < n; i++)
        {
     
            // Odd
            if ((a[i] & 1) == 1)
                count_odd++;
     
            // Even
            else
                count_even++;
        }
     
        // Condition check
        if (count_odd % 2 == 1 && count_even % 2 == 1)
            return false;
     
        else
            return true;
    }
     
    // Drivers code
    public static void main (String[] args)
    {
        int []a = { 1, 0, 1, 1, 0, 1 };
        int n = a.length;
     
        if (flipsPossible(a, n))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to check if parity
# can be made same or not
def flipsPossible(a, n) :
 
    count_odd = 0; count_even = 0;
 
    # Iterate and count the parity
    for i in range(n) :
 
        # Odd
        if (a[i] & 1) :
            count_odd += 1;
 
        # Even
        else :
            count_even += 1;
 
    # Condition check
    if (count_odd % 2 and count_even % 2) :
        return False;
    else :
        return True;
 
# Driver Code
if __name__ == "__main__" :
 
    a = [ 1, 0, 1, 1, 0, 1 ];
     
    n = len(a);
 
    if (flipsPossible(a, n)) :
        print("Yes");
    else :
        print("No");
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to check if parity
    // can be made same or not
    static bool flipsPossible(int []a, int n)
    {
     
        int count_odd = 0, count_even = 0;
     
        // Iterate and count the parity
        for (int i = 0; i < n; i++)
        {
     
            // Odd
            if ((a[i] & 1) == 1)
                count_odd++;
     
            // Even
            else
                count_even++;
        }
     
        // Condition check
        if (count_odd % 2 == 1 && count_even % 2 == 1)
            return false;
     
        else
            return true;
    }
     
    // Drivers code
    public static void Main(String[] args)
    {
        int []a = { 1, 0, 1, 1, 0, 1 };
        int n = a.Length;
     
        if (flipsPossible(a, n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
     
// Function to check if parity
// can be made same or not
function flipsPossible(a, n){
 
 
    let count_odd = 0;
    let count_even = 0;
 
    // Iterate and count the parity
    for (let i = 0; i < n; i++)
    {
 
        // Odd
        if ((a[i] & 1) == 1)
            count_odd++;
        // Even
        else
            count_even++;
    }
     
    // Condition check
    if (count_odd % 2 == 1 && count_even % 2 == 1)
        return false;
    else
        return true;
}
     
// Drivers code
 
let a = [1, 0, 1, 1, 0, 1];
let n = a.length;
 
if (flipsPossible(a, n))
    document.write("Yes");
else
    document.write("No");
     
</script>


Output

Yes

Time Complexity: O(N)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments