Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if a subarray of length K with sum equal to factorial...

Check if a subarray of length K with sum equal to factorial of a number exists or not

Given an array arr[] of N integers and an integer K, the task is to find a subarray of length K with a sum of elements equal to factorial of any number. If no such subarray exists, print “-1”.

Examples:

Input: arr[] = {23, 45, 2, 4, 6, 9, 3, 32}, K = 5
Output: 2 4 6 9 3
Explanation:
Subarray {2, 4, 6, 9, 3} with sum 24 (= 4!) satisfies the required condition.

Input: arr[] = {23, 45, 2, 4, 6, 9, 3, 32}, K = 3
Output: -1
Explanation:
No such subarray of length K (= 3) exists.

Naive Approach: The simplest approach to solve the problem is to calculate the sum of all subarrays of length K and check if any of those sums is factorial of any number. If found to be true for any subarray, print that subarray. Otherwise, print “-1”

Time Complexity: O(N*K)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use the Sliding Window technique to calculate the sum of all subarrays of length K and then check if the sum is a factorial or not. Below are the steps:

  1. Calculate the sum of first K array elements and store the sum in a variable, say sum.
  2. Then traverse the remaining array and keep updating sum to get the sum of the current subarray of size K by subtracting the first element from the previous subarray and adding the current array element.
  3. To check whether the sum is a factorial of a number or not, divide the sum by 2, 3, and so on until it cannot be divided further. If the number reduces to 1, the sum is the factorial of a number.
  4. If the sum in the above step is a factorial of a number, store the starting and ending index of that subarray to print the subarray.
  5. After completing the above steps, if no such subarray is found, print “-1”. Otherwise, print the subarray whose start and end indices are stored.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// is factorial of a number or not
int isFactorial(int n)
{
    int i = 2;
    while (n != 1) {
 
        // If n is not a factorial
        if (n % i != 0) {
            return 0;
        }
        n /= i;
        i++;
    }
    return i - 1;
}
 
// Function to return the index of
// the valid subarray
pair<int, int> sumFactorial(
    vector<int> arr, int K)
{
    int i, sum = 0, ans;
 
    // Calculate the sum of
    // first subarray of length K
    for (i = 0; i < K; i++) {
 
        sum += arr[i];
    }
 
    // Check if sum is a factorial
    // of any number or not
    ans = isFactorial(sum);
 
    // If sum of first K length subarray
    // is factorial of a number
    if (ans != 0) {
        return make_pair(ans, 0);
    }
 
    // Find the number formed from the
    // subarray which is a factorial
    for (int j = i; j < arr.size(); j++) {
 
        // Update sum of current subarray
        sum += arr[j] - arr[j - K];
 
        // Check if sum is a factorial
        // of any number or not
        ans = isFactorial(sum);
 
        // If ans is true, then return
        // index of the current subarray
        if (ans != 0) {
            return make_pair(ans,
                             j - K + 1);
        }
    }
 
    // If the required subarray is
    // not possible
    return make_pair(-1, 0);
}
 
// Function to print the subarray whose
// sum is a factorial of any number
void printRes(pair<int, int> answer,
              vector<int> arr, int K)
{
 
    // If no such subarray exists
    if (answer.first == -1) {
 
        cout << -1 << endl;
    }
 
    // Otherwise
    else {
 
        int i = 0;
        int j = answer.second;
 
        // Iterate to print subarray
        while (i < K) {
 
            cout << arr[j] << " ";
            i++;
            j++;
        }
    }
}
 
// Driver Code
int main()
{
    vector<int> arr
        = { 23, 45, 2, 4,
            6, 9, 3, 32 };
 
    // Given sum K
    int K = 5;
 
    // Function Call
    pair<int, int> answer
        = sumFactorial(arr, K);
 
    // Print the result
    printRes(answer, arr, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
import java.io.*;
 
class GFG{
     
// Pair class
public static class Pair
{
    int x;
    int y;
     
    Pair(int x, int y)
    {
        this.x = x;
        this.y = y;
    }
}
 
// Function to check if a number
// is factorial of a number or not
static int isFactorial(int n)
{
    int i = 2;
    while (n != 1)
    {
 
        // If n is not a factorial
        if (n % i != 0)
        {
            return 0;
        }
        n /= i;
        i++;
    }
    return i - 1;
}
 
// Function to return the index of
// the valid subarray
static ArrayList<Pair> sumFactorial(int arr[],
                                    int K)
{
    ArrayList<Pair> pair = new ArrayList<>();
     
    int i, sum = 0, ans;
 
    // Calculate the sum of
    // first subarray of length K
    for(i = 0; i < K; i++)
    {
        sum += arr[i];
    }
     
    // Check if sum is a factorial
    // of any number or not
    ans = isFactorial(sum);
     
    // If sum of first K length subarray
    // is factorial of a number
    if (ans != 0)
    {
        Pair p = new Pair(ans, 0);
        pair.add(p);
        return pair;
    }
 
    // Find the number formed from the
    // subarray which is a factorial
    for(int j = i; j < arr.length; j++)
    {
 
        // Update sum of current subarray
        sum += arr[j] - arr[j - K];
 
        // Check if sum is a factorial
        // of any number or not
        ans = isFactorial(sum);
 
        // If ans is true, then return
        // index of the current subarray
        if (ans != 0)
        {
            Pair p = new Pair(ans, j - K + 1);
            pair.add(p);
            return pair;
        }
    }
 
    // If the required subarray is
    // not possible
    Pair p = new Pair(-1, 0);
    pair.add(p);
    return pair;
}
 
// Function to print the subarray whose
// sum is a factorial of any number
static void printRes(ArrayList<Pair> answer,
                     int arr[], int K)
{
     
    // If no such subarray exists
    if (answer.get(0).x == -1)
    {
         
        // cout << -1 << endl;
        System.out.println("-1");
    }
 
    // Otherwise
    else
    {
        int i = 0;
        int j = answer.get(0).y;
 
        // Iterate to print subarray
        while (i < K)
        {
            System.out.print(arr[j] + " ");
            i++;
            j++;
        }
    }
}
 
// Driver Code
public static void main(String args[])
{
     
    // Given array arr[] and brr[]
    int arr[] = { 23, 45, 2, 4,
                  6, 9, 3, 32 };
                   
    int K = 5;
    ArrayList<Pair> answer = new ArrayList<>();
     
    // Function call
    answer = sumFactorial(arr,K);
                     
    // Print the result
    printRes(answer, arr, K);
}
}
 
// This code is contributed by bikram2001jha


Python3




# Python3 program for the above approach
 
# Function to check if a number
# is factorial of a number or not
def isFactorial(n):
 
    i = 2
     
    while (n != 1):
         
        # If n is not a factorial
        if (n % i != 0):
            return 0
         
        n = n // i
        i += 1
     
    return i - 1
 
# Function to return the index of
# the valid subarray
def sumFactorial(arr, K):
 
    i, Sum = 0, 0
 
    # Calculate the sum of
    # first subarray of length K
    while(i < K):
        Sum += arr[i]
        i += 1
 
    # Check if sum is a factorial
    # of any number or not
    ans = isFactorial(Sum)
 
    # If sum of first K length subarray
    # is factorial of a number
    if (ans != 0):
        return (ans, 0)
 
    # Find the number formed from the
    # subarray which is a factorial
    for j in range(i, len(arr)):
     
        # Update sum of current subarray
        Sum = Sum + arr[j] - arr[j - K]
 
        # Check if sum is a factorial
        # of any number or not
        ans = isFactorial(Sum)
 
        # If ans is true, then return
        # index of the current subarray
        if (ans != 0):
            return (ans, j - K + 1)
 
    # If the required subarray is
    # not possible
    return (-1, 0)
 
# Function to print the subarray whose
# sum is a factorial of any number
def printRes(answer, arr, K):
 
    # If no such subarray exists
    if (answer[0] == -1):
        print(-1)
 
    # Otherwise
    else:
        i = 0
        j = answer[1]
 
        # Iterate to print subarray
        while (i < K):
            print(arr[j], end = " ")
            i += 1
            j += 1
 
# Driver code
arr = [ 23, 45, 2, 4, 6, 9, 3, 32 ]
 
# Given sum K
K = 5
 
# Function call
answer = sumFactorial(arr, K)
 
# Print the result
printRes(answer, arr, K)
 
# This code is contributed by divyeshrabadiya07


C#




// C# program for
// the above approach
using System;
using System.Collections.Generic;
class GFG{
     
// Pair class
public class Pair
{
  public int x;
  public int y;
 
  public Pair(int x, int y)
  {
    this.x = x;
    this.y = y;
  }
}
 
// Function to check if a number
// is factorial of a number or not
static int isFactorial(int n)
{
  int i = 2;
  while (n != 1)
  {
    // If n is not
    // a factorial
    if (n % i != 0)
    {
      return 0;
    }
    n /= i;
    i++;
  }
  return i - 1;
}
 
// Function to return the index of
// the valid subarray
static List<Pair> sumFactorial(int []arr,
                               int K)
{
  List<Pair> pair = new List<Pair>();
  int i, sum = 0, ans;
 
  // Calculate the sum of
  // first subarray of length K
  for(i = 0; i < K; i++)
  {
    sum += arr[i];
  }
 
  // Check if sum is a factorial
  // of any number or not
  ans = isFactorial(sum);
 
  // If sum of first K length subarray
  // is factorial of a number
  if (ans != 0)
  {
    Pair p = new Pair(ans, 0);
    pair.Add(p);
    return pair;
  }
 
  // Find the number formed from the
  // subarray which is a factorial
  for(int j = i; j < arr.Length; j++)
  {
    // Update sum of current subarray
    sum += arr[j] - arr[j - K];
 
    // Check if sum is a factorial
    // of any number or not
    ans = isFactorial(sum);
 
    // If ans is true, then return
    // index of the current subarray
    if (ans != 0)
    {
      Pair p = new Pair(ans, j - K + 1);
      pair.Add(p);
      return pair;
    }
  }
 
  // If the required subarray is
  // not possible
  Pair p1 = new Pair(-1, 0);
  pair.Add(p1);
  return pair;
}
 
// Function to print the subarray whose
// sum is a factorial of any number
static void printRes(List<Pair> answer,
                     int []arr, int K)
{
  // If no such subarray exists
  if (answer[0].x == -1)
  {
    // cout << -1 << endl;
    Console.WriteLine("-1");
  }
 
  // Otherwise
  else
  {
    int i = 0;
    int j = answer[0].y;
 
    // Iterate to print subarray
    while (i < K)
    {
      Console.Write(arr[j] + " ");
      i++;
      j++;
    }
  }
}
 
// Driver Code
public static void Main(String []args)
{    
  // Given array []arr and brr[]
  int []arr = {23, 45, 2, 4,
               6, 9, 3, 32};
  int K = 5;
  List<Pair> answer = new List<Pair>();
   
  // Function call
  answer = sumFactorial(arr, K);
 
  // Print the result
  printRes(answer, arr, K);
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
    // JavaScript program for the above approach
    // Function to check if a number
    // is factorial of a number or not
    function isFactorial(n)
    {
        let i = 2;
        while (n != 1) {
 
            // If n is not a factorial
            if (n % i != 0) {
                return 0;
            }
            n = parseInt(n / i, 10);
            i++;
        }
        return i - 1;
    }
 
    // Function to return the index of
    // the valid subarray
    function sumFactorial(arr,K)
    {
        let i, sum = 0, ans;
 
        // Calculate the sum of
        // first subarray of length K
        for (i = 0; i < K; i++) {
 
            sum += arr[i];
        }
 
        // Check if sum is a factorial
        // of any number or not
        ans = isFactorial(sum);
 
        // If sum of first K length subarray
        // is factorial of a number
        if (ans != 0) {
            return [ans, 0];
        }
 
        // Find the number formed from the
        // subarray which is a factorial
        for (let j = i; j < arr.length; j++) {
 
            // Update sum of current subarray
            sum += arr[j] - arr[j - K];
 
            // Check if sum is a factorial
            // of any number or not
            ans = isFactorial(sum);
 
            // If ans is true, then return
            // index of the current subarray
            if (ans != 0) {
                return [ans, j - K + 1];
            }
        }
 
        // If the required subarray is
        // not possible
        return [-1, 0];
    }
 
    // Function to print the subarray whose
    // sum is a factorial of any number
    function printRes(answer,arr,K)
    {
 
        // If no such subarray exists
        if (answer[0] == -1) {
 
            document.write(-1);
        }
 
        // Otherwise
        else {
 
            let i = 0;
            let j = answer[1];
 
            // Iterate to print subarray
            while (i < K) {
 
                document.write(arr[j] + " ");
                i++;
                j++;
            }
        }
    }
 
    // Driver Code
 
    let arr= [ 23, 45, 2, 4,
            6, 9, 3, 32 ];
 
    // Given sum K
    let K = 5;
 
    // Function Call
    let answer= sumFactorial(arr, K);
 
    // Print the result
    printRes(answer, arr, K);
 
</script>


Output: 

2 4 6 9 3

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments