Monday, January 13, 2025
Google search engine
HomeData Modelling & AICheck if a number is Quartan Prime or not

Check if a number is Quartan Prime or not

Given a positive integer N, check if it is Quartan prime or not. Print ‘Yes’ if it is a Quartan prime otherwise Print ‘No’.
Quartan Prime : A prime number of the form x4 + y4 where x > 0, y > 0, and x and y are integers is a Quartan Prime. 
Quartan Prime in the range 1 – 100 are: 
 

2, 17, 97 
 

Examples
 

Input : 17
Output : Yes
Explanation : 17 is a prime number and can be
expressed in the form of:
x4 + y4  as ( 14 + 24 )

Input : 31
Output : No
Explanation: 31 is prime number but can not be
expressed in the form of x4 + y4.

 

A Simple Solution is to check if the given number is prime or not and then check if it can be expressed in the form of x4 + y4 or not.
An Efficient Solution is based on the fact that every Quartan Prime can also be expressed in the form 16*n + 1. So, we can check if a number is prime or not and can be expressed in the form of 16*n + 1 or not. If yes, Then the number is Quartan Prime otherwise not.
Below is the implementation of the above approach
 

C++




// CPP program to check if a number is
// Quartan Prime or not
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// is prime or not
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6) {
        if (n % i == 0 || n % (i + 2) == 0) {
            return false;
        }
    }
    return true;
}
 
// Driver Program
int main()
{
    int n = 17;
 
    // Check if number is prime
    // and of the form 16*n + 1
    if (isPrime(n) && (n % 16 == 1)) {
        cout << "YES";
    }
    else {
        cout << "NO";
    }
 
    return 0;
}


Java




// JAVA program to check if a number is
// Quartan Prime or not
 
class GFG {
 
    // Function to check if a number
    // is prime or not
    static boolean isPrime(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (int i = 5; i * i <= n; i = i + 6) {
            if (n % i == 0 || n % (i + 2) == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Driver Program
    public static void main(String[] args)
    {
        int n = 17;
 
        // Check if number is prime
        // and of the form 16*n + 1
        if (isPrime(n) && (n % 16 == 1)) {
            System.out.println("YES");
        }
        else {
            System.out.println("NO");
        }
    }
}


Python3




# Python 3 program to check if a number is
# Quartan Prime or not
 
# Utility function to check
# if a number is prime or not
def isPrime(n) :
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
   
    # This is checked so that we can skip 
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
   
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0) :
            return False
        i = i + 6
   
    return True
           
# Driver Code
n = 17
     
# Check if number is prime
# and of the form 16 * n + 1
 
if(isPrime(n) and (n % 16 == 1) ):
 
    print("YES")
 
else:
 
    print("NO")
 
           


C#




// C# program to check if a number
// is Quartan Prime or not
using System;
 
class GFG
{
 
// Function to check if a number
// is prime or not
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we
    // can skip middle five numbers
    // in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
    {
        if (n % i == 0 || n % (i + 2) == 0)
        {
            return false;
        }
    }
    return true;
}
 
// Driver Code
public static void Main()
{
    int n = 17;
 
    // Check if number is prime
    // and of the form 16*n + 1
    if (isPrime(n) && (n % 16 == 1))
    {
        Console.WriteLine("YES");
    }
    else
    {
        Console.WriteLine("NO");
    }
}
}
 
// This code is contributed
// by inder_verma


PHP




<?php
// PHP program to check if a number
// is Quartan Prime or not
 
// Function to check if a
// number is prime or not
function isPrime($n)
{
    // Corner cases
    if ($n <= 1)
        return false;
    if ($n <= 3)
        return true;
 
    // This is checked so that
    // we can skip middle five
    // numbers in below loop
    if ($n % 2 == 0 || $n % 3 == 0)
        return false;
 
    for ($i = 5; $i * $i <= $n;
                 $i = $i + 6)
    {
        if ($n % $i == 0 ||
            $n % ($i + 2) == 0)
        {
            return false;
        }
    }
    return true;
}
 
// Driver Code
$n = 17;
 
// Check if number is prime
// and of the form 16*n + 1
if (isPrime($n) && ($n % 16 == 1))
{
    echo "YES";
}
else
{
    echo "NO";
}
 
// This code is contributed
// anuj_67
?>


Javascript




<script>
// Javascript program to check if a number is
// Quartan Prime or not
 
// Function to check if a number
// is prime or not
function isPrime(n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (var i = 5; i * i <= n; i = i + 6) {
        if (n % i == 0 || n % (i + 2) == 0) {
            return false;
        }
    }
    return true;
}
 
// Driver Program
var n = 17;
 
// Check if number is prime
// and of the form 16*n + 1
if (isPrime(n) && (n % 16 == 1)) {
    document.write( "YES");
}
else {
    document.write( "NO");
}
 
// This code is contributed by itsok.
</script>


Output: 

YES

 

Time Complexity: O(sqrt(n))

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments