Given a very large number N (> 150), the task is to check whether this number is Prime, Semi-Prime or Composite.
Example:
Input: N = 90000000
Output: Not Prime
Explanation:
we have (N-1)%6 = 89999999%6 = 1 and
(N+1)%6 = 90000001%6 = 5
Since n-1 and n+1 is not divisible by 6
Therefore N = 90000000 is Not Prime
Input: N = 7894561
Output: Semi-Prime
Explanation:
Here N = 7894561 = 71*111191
Since 71 & 111191 are prime, therefore 7894561 is Semi Prime
Approach:
- It can be observed that if n is a Prime Number then n+1 or n-1 will be divisible by 6
- If a number n exists such that neither n+1 nor n-1 is divisible by 6 then n is not a prime number
- If a number n exists such that either n+1 or n-1 is divisible by 6 then n is either a prime or a semiprime number
- To differentiate between prime and semi-prime, the following method is used:
- If N is semi prime then,
N = p*q ....................(1) where p & q are primes.
- Then from Goldbach Conjecture:
p + q must be even i.e, p + q = 2*n for any positive integer n
- Therefore solving for p & q will give
p = n - sqrt(n2 - N) q = n + sqrt(n2 - N)
- Let n2 – N be perfect square, Then
n2 - N = m2, .................(2) for any positive integer m
- Solving Equations (1) & (2) we get
m = (q-p)/2 n = (p+q)/2
- Now if equation (1) & (2) meets at some point, then there exists a pair (p, q) such that the number N is semiprime otherwise N is prime.
- Equation(2) forms Pythagorean Triplet
- The solution expected varies on the graph
Pseudo code:
- Input a number N and if N – 1 and N + 1 is not divisible by 6 then the number N is Not Prime. else it is prime or semi-prime
- If n-1 or n+1 is divisible by 6 then iterate in the range(sqrt(N) + 1, N) and find a pair (p, q) such that p*q = N by below formula:
p = i - sqrt(i*i - N) q = n/p where i = index in range(sqrt(N) + 1, N)
- If p*q = N then the number N is semi prime, else it is prime
Below is the implementation of the above approach:
Java
import static java.lang.Math.sqrt;public class Primmefunc { public static void prime(long n) { int flag = 0; // checking divisibility by 6 if ((n + 1) % 6 != 0 && (n - 1) % 6 != 0) { System.out.println("Not Prime"); } else { // breakout if number is perfect square double s = sqrt(n); if ((s * s) == n) { System.out.println("Semi-Prime"); } else { long f = (long)s; long l = (long)((f * f)); // Iterating over to get the // closest average value for (long i = f + 1; i < l; i++) { // 1st Factor long p = i - (long)(sqrt((i * i) - (n))); // 2nd Factor long q = n / p; // To avoid Convergence if (p < 2 || q < 2) { break; } // checking semi-prime condition if ((p * q) == n) { flag = 1; break; } // If convergence found // then number is semi-prime else { // convergence not found // then number is prime flag = 2; } } if (flag == 1) { System.out.println("Semi-Prime"); } else if (flag == 2) { System.out.println("Prime"); } } } } public static void main(String[] args) { // Driver code // Entered number should be greater // than 300 to avoid Convergence of // second factor to 1 prime(8179); prime(7894561); prime(90000000); prime(841); prime(22553); prime(1187); }//written by Rushil Jhaveri} |
CPP
#include<bits/stdc++.h>using namespace std ;void prime(long n){ int flag = 0; // checking divisibility by 6 if ((n + 1) % 6 != 0 && (n - 1) % 6 != 0) { cout << ("Not Prime") << endl; } else { // breakout if number is perfect square double s = sqrt(n); if ((s * s) == n) { cout<<("Semi-Prime")<<endl; } else { long f = (long)s; long l = (long)((f * f)); // Iterating over to get the // closest average value for (long i = f + 1; i < l; i++) { // 1st Factor long p = i - (long)(sqrt((i * i) - (n))); // 2nd Factor long q = n / p; // To avoid Convergence if (p < 2 || q < 2) { break; } // checking semi-prime condition if ((p * q) == n) { flag = 1; break; } // If convergence found // then number is semi-prime else { // convergence not found // then number is prime flag = 2; } } if (flag == 1) { cout<<("Semi-Prime")<<endl; } else if (flag == 2) { cout<<("Prime")<<endl; } } }}// Driver codeint main(){ // Entered number should be greater // than 300 to avoid Convergence of // second factor to 1 prime(8179); prime(7894561); prime(90000000); prime(841); prime(22553); prime(1187);}// This code is contributed by Rajput-Ji |
Python3
def prime(n): flag = 0; # checking divisibility by 6 if ((n + 1) % 6 != 0 and (n - 1) % 6 != 0): print("Not Prime"); else: # breakout if number is perfect square s = pow(n, 1/2); if ((s * s) == n): print("Semi-Prime"); else: f = int(s); l = int(f * f); # Iterating over to get the # closest average value for i in range(f + 1, l): # 1st Factor p = i - (pow(((i * i) - (n)), 1/2)); # 2nd Factor q = n // p; # To avoid Convergence if (p < 2 or q < 2): break; # checking semi-prime condition if ((p * q) == n): flag = 1; break; # If convergence found # then number is semi-prime else: # convergence not found # then number is prime flag = 2; if (flag == 1): print("Semi-Prime"); elif(flag == 2): print("Prime"); # Driver codeif __name__ == '__main__': # Entered number should be greater # than 300 to avoid Convergence of # second factor to 1 prime(8179); prime(7894561); prime(90000000); prime(841); prime(22553); prime(1187);# This code is contributed by 29AjayKumar |
C#
using System;public class Primmefunc { public static void prime(long n) { int flag = 0; // checking divisibility by 6 if ((n + 1) % 6 != 0 && (n - 1) % 6 != 0) { Console.WriteLine("Not Prime"); } else { // breakout if number is perfect square double s = Math.Sqrt(n); if ((s * s) == n) { Console.WriteLine("Semi-Prime"); } else { long f = (long)s; long l = (long)((f * f)); // Iterating over to get the // closest average value for (long i = f + 1; i < l; i++) { // 1st Factor long p = i - (long)(Math.Sqrt((i * i) - (n))); // 2nd Factor long q = n / p; // To avoid Convergence if (p < 2 || q < 2) { break; } // checking semi-prime condition if ((p * q) == n) { flag = 1; break; } // If convergence found // then number is semi-prime else { // convergence not found // then number is prime flag = 2; } } if (flag == 1) { Console.WriteLine("Semi-Prime"); } else if (flag == 2) { Console.WriteLine("Prime"); } } } } // Driver code public static void Main(String[] args) { // Entered number should be greater // than 300 to avoid Convergence of // second factor to 1 prime(8179); prime(7894561); prime(90000000); prime(841); prime(22553); prime(1187); }}// This code is contributed by 29AjayKumar |
Javascript
<script> function prime(n) { var flag = 0; // checking divisibility by 6 if ((n + 1) % 6 != 0 && (n - 1) % 6 != 0) { document.write("Not Prime<br>"); } else { // breakout if number is perfect square var s = parseInt(Math.sqrt(n)); if ((s * s) == n) { document.write("Semi-Prime<br>"); } else { var f = s; var l = ((f * f)); // Iterating over to get the // closest average value for (var i = f + 1; i < l; i++) { // 1st Factor var p = i - parseInt(Math.sqrt((i * i) - (n))); // 2nd Factor var q = parseInt(n / p); // To avoid Convergence if (p < 2 || q < 2) { break; } // checking semi-prime condition if ((p * q) == n) { flag = 1; break; } // If convergence found // then number is semi-prime else { // convergence not found // then number is prime flag = 2; } } if (flag == 1) { document.write("Semi-Prime<br>"); } else if (flag == 2) { document.write("Prime<br>"); } } } }// Driver code // Entered number should be greater // than 300 to avoid Convergence of // second factor to 1 prime(8179); prime(7894561); prime(90000000); prime(841); prime(22553); prime(1187);// This code is contributed by 29AjayKumar </script> |
Prime Semi-Prime Not Prime Semi-Prime Semi-Prime Prime
Time Complexity: O(N)
Auxiliary space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

