Wednesday, December 25, 2024
Google search engine
HomeLanguagesJavaCheck if a number is Bleak

Check if a number is Bleak

A number ‘n’ is called Bleak if it cannot be represented as sum of a positive number x and set bit count in x, i.e., x + countSetBits(x) is not equal to n for any non-negative number x.
Examples : 

Input : n = 3
Output : false
3 is not Bleak as it can be represented
as 2 + countSetBits(2).

Input : n = 4
Output : true
4 is t Bleak as it cannot be represented 
as sum of a number x and countSetBits(x)
for any number x.

 

Recommended Practice

Method 1 (Simple) 
 

bool isBleak(n)
1) Consider all numbers smaller than n
    a) If x + countSetBits(x) == n
           return false

2) Return true

Below is the implementation of the simple approach. 
 

C++




// A simple C++ program to check Bleak Number
#include <bits/stdc++.h>
using namespace std;
 
/* Function to get no of set bits in binary
   representation of passed binary no. */
int countSetBits(int x)
{
    unsigned int count = 0;
    while (x) {
        x &= (x - 1);
        count++;
    }
    return count;
}
 
// Returns true if n is Bleak
bool isBleak(int n)
{
    // Check for all numbers 'x' smaller
    // than n.  If x + countSetBits(x)
    // becomes n, then n can't be Bleak
    for (int x = 1; x < n; x++)
        if (x + countSetBits(x) == n)
            return false;
 
    return true;
}
 
// Driver code
int main()
{
    isBleak(3) ? cout << "Yes\n" : cout << "No\n";
    isBleak(4) ? cout << "Yes\n" : cout << "No\n";
    return 0;
}


Java




// A simple Java program to check Bleak Number
import java.io.*;
 
class GFG {
 
    /* Function to get no of set bits in binary
       representation of passed binary no. */
    static int countSetBits(int x)
    {
        int count = 0;
        while (x != 0) {
            x &= (x - 1);
            count++;
        }
        return count;
    }
 
    // Returns true if n is Bleak
    static boolean isBleak(int n)
    {
        // Check for all numbers 'x' smaller
        // than n.  If x + countSetBits(x)
        // becomes n, then n can't be Bleak
        for (int x = 1; x < n; x++)
            if (x + countSetBits(x) == n)
                return false;
 
        return true;
    }
 
    // Driver code
    public static void main(String args[])
    {
        if (isBleak(3))
            System.out.println("Yes");
        else
            System.out.println("No");
        if (isBleak(4))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
/*This code is contributed by Nikita Tiwari.*/


Python3




# A simple Python 3 program
# to check Bleak Number
 
# Function to get no of set
# bits in binary
# representation of passed
# binary no.
def countSetBits(x) :
     
    count = 0
     
    while (x) :
        x = x & (x-1)
        count = count + 1
     
    return count
     
# Returns true if n
# is Bleak
def isBleak(n) :
 
    # Check for all numbers 'x'
    # smaller than n. If x +
    # countSetBits(x) becomes
    # n, then n can't be Bleak.
    for x in range(1, n) :
         
        if (x + countSetBits(x) == n) :
            return False
             
    return True
     
# Driver code
if(isBleak(3)) :
    print( "Yes")
else :
    print("No")
 
if(isBleak(4)) :
    print("Yes")
else :
    print( "No")
     
# This code is contributed by Nikita Tiwari.


C#




// A simple C# program to check
// Bleak Number
using System;
 
class GFG {
 
    /* Function to get no of set
    bits in binary representation
    of passed binary no. */
    static int countSetBits(int x)
    {
        int count = 0;
         
        while (x != 0) {
            x &= (x - 1);
            count++;
        }
         
        return count;
    }
 
    // Returns true if n is Bleak
    static bool isBleak(int n)
    {
         
        // Check for all numbers
        // 'x' smaller than n. If
        // x + countSetBits(x)
        // becomes n, then n can't
        // be Bleak
        for (int x = 1; x < n; x++)
         
            if (x + countSetBits(x)
                              == n)
                return false;
 
        return true;
    }
 
    // Driver code
    public static void Main()
    {
        if (isBleak(3))
            Console.Write("Yes");
        else
            Console.WriteLine("No");
             
        if (isBleak(4))
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}
 
// This code is contributed by
// Nitin mittal


PHP




<?php
// A simple PHP program
// to check Bleak Number
 
// Function to get no of
// set bits in binary
// representation of
// passed binary no.
function countSetBits( $x)
{
    $count = 0;
    while ($x)
    {
        $x &= ($x - 1);
        $count++;
    }
    return $count;
}
 
// Returns true if n is Bleak
function isBleak( $n)
{
     
    // Check for all numbers 'x' smaller
    // than n. If x + countSetBits(x)
    // becomes n, then n can't be Bleak
    for($x = 1; $x < $n; $x++)
        if ($x + countSetBits($x) == $n)
            return false;
 
    return true;
}
 
    // Driver code
    if(isBleak(3))
        echo "Yes\n" ;
    else
        echo "No\n";
         
    if(isBleak(4))
        echo "Yes\n" ;
    else
        echo "No\n";
         
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// JavaScript program to check Bleak Number
 
    /* Function to get no of set bits in binary
       representation of passed binary no. */
    function countSetBits(x)
    {
        let count = 0;
        while (x != 0) {
            x &= (x - 1);
            count++;
        }
        return count;
    }
   
    // Returns true if n is Bleak
    function isBleak(n)
    {
        // Check for all numbers 'x' smaller
        // than n.  If x + countSetBits(x)
        // becomes n, then n can't be Bleak
        for (let x = 1; x < n; x++)
            if (x + countSetBits(x) == n)
                return false;
   
        return true;
    }
   
 
// Driver Code
 
        if (isBleak(3))
            document.write("Yes" + "<br/>");
        else
            document.write("No" + "<br/>");
        if (isBleak(4))
            document.write("Yes" + "<br/>");
        else
            document.write("No" + "<br/>");
 
</script>


Output : 

No
Yes

Time complexity of above solution is O(n Log n). 

Auxiliary Space: O(1)
Method 2 (Efficient) 
The idea is based on the fact that the largest count of set bits in any number smaller than n cannot exceed ceiling of Log2n. So we need to check only numbers from range n – ceilingLog2(n) to n.
 

bool isBleak(n)
1) Consider all numbers n - ceiling(Log2n) to n-1
    a) If x + countSetBits(x) == n
           return false

2) Return true

Below is the implementation of the idea. 
 

C++




// An efficient C++ program to check Bleak Number
#include <bits/stdc++.h>
using namespace std;
 
/* Function to get no of set bits in binary
   representation of passed binary no. */
int countSetBits(int x)
{
    unsigned int count = 0;
    while (x) {
        x &= (x - 1);
        count++;
    }
    return count;
}
 
// A function to return ceiling of log x
// in base 2. For example, it returns 3
// for 8 and 4 for 9.
int ceilLog2(int x)
{
    int count = 0;
    x--;
    while (x > 0) {
        x = x >> 1;
        count++;
    }
    return count;
}
 
// Returns true if n is Bleak
bool isBleak(int n)
{
    // Check for all numbers 'x' smaller
    // than n.  If x + countSetBits(x)
    // becomes n, then n can't be Bleak
    for (int x = n - ceilLog2(n); x < n; x++)
        if (x + countSetBits(x) == n)
            return false;
 
    return true;
}
 
// Driver code
int main()
{
    isBleak(3) ? cout << "Yes\n" : cout << "No\n";
    isBleak(4) ? cout << "Yes\n" : cout << "No\n";
    return 0;
}


Java




// An efficient Java program to
// check Bleak Number
import java.io.*;
 
class GFG {
 
    /* Function to get no of set bits in
    binary representation of passed binary
    no. */
    static int countSetBits(int x)
    {
        int count = 0;
        while (x != 0) {
            x &= (x - 1);
            count++;
        }
        return count;
    }
 
    // A function to return ceiling of log x
    // in base 2. For example, it returns 3
    // for 8 and 4 for 9.
    static int ceilLog2(int x)
    {
        int count = 0;
        x--;
        while (x > 0) {
            x = x >> 1;
            count++;
        }
        return count;
    }
 
    // Returns true if n is Bleak
    static boolean isBleak(int n)
    {
        // Check for all numbers 'x' smaller
        // than n. If x + countSetBits(x)
        // becomes n, then n can't be Bleak
        for (int x = n - ceilLog2(n); x < n; x++)
            if (x + countSetBits(x) == n)
                return false;
 
        return true;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        if (isBleak(3))
            System.out.println("Yes");
        else
            System.out.println("No");
 
        if (isBleak(4))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
// This code is contributed by Prerna Saini


Python3




# An efficient Python 3 program
# to check Bleak Number
import math
 
# Function to get no of set
# bits in binary representation
# of passed binary no.
def countSetBits(x) :
     
    count = 0
     
    while (x) :
        x = x & (x - 1)
        count = count + 1
     
    return count
     
# A function to return ceiling
# of log x in base 2. For
# example, it returns 3 for 8
# and 4 for 9.
def ceilLog2(x) :
     
    count = 0
    x = x - 1
     
    while (x > 0) :
        x = x>>1
        count = count + 1
     
    return count
     
# Returns true if n is Bleak
def isBleak(n) :
     
    # Check for all numbers 'x'
    # smaller than n. If x +
    # countSetBits(x) becomes n,
    # then n can't be Bleak
    for x in range ((n - ceilLog2(n)), n) :
         
        if (x + countSetBits(x) == n) :
            return False
 
    return True
 
# Driver code
if(isBleak(3)) :
    print("Yes")
else :
    print( "No")
     
if(isBleak(4)) :
    print("Yes")
else :
    print("No")
     
# This code is contributed by Nikita Tiwari.


C#




// An efficient C# program to check
// Bleak Number
using System;
 
class GFG {
 
    /* Function to get no of set
    bits in binary representation
    of passed binary no. */
    static int countSetBits(int x)
    {
        int count = 0;
        while (x != 0) {
            x &= (x - 1);
            count++;
        }
        return count;
    }
 
    // A function to return ceiling
    // of log x in base 2. For
    // example, it returns 3 for 8
    // and 4 for 9.
    static int ceilLog2(int x)
    {
        int count = 0;
        x--;
        while (x > 0) {
            x = x >> 1;
            count++;
        }
        return count;
    }
 
    // Returns true if n is Bleak
    static bool isBleak(int n)
    {
         
        // Check for all numbers
        // 'x' smaller than n. If
        // x + countSetBits(x)
        // becomes n, then n
        // can't be Bleak
        for (int x = n - ceilLog2(n);
                          x < n; x++)
            if (x + countSetBits(x)
                               == n)
                return false;
 
        return true;
    }
 
    // Driver code
    public static void Main()
    {
        if (isBleak(3))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
 
        if (isBleak(4))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by anuj_67.


PHP




<?php
// An efficient PHP program
// to check Bleak Number
 
/* Function to get no of set
   bits in binary representation
   of passed binary no. */
function countSetBits( $x)
{
    $count = 0;
    while ($x)
    {
        $x &= ($x - 1);
        $count++;
    }
    return $count;
}
 
// A function to return ceiling of log x
// in base 2. For example, it returns 3
// for 8 and 4 for 9.
function ceilLog2( $x)
{
     
    $count = 0;
    $x--;
    while ($x > 0)
    {
        $x = $x >> 1;
        $count++;
    }
    return $count;
}
 
// Returns true if n is Bleak
function isBleak( $n)
{
     
    // Check for all numbers 'x' smaller
    // than n. If x + countSetBits(x)
    // becomes n, then n can't be Bleak
    for ($x = $n - ceilLog2($n); $x < $n; $x++)
        if ($x + countSetBits($x) == $n)
            return false;
 
    return true;
}
 
    // Driver code
    if(isBleak(3))
        echo "Yes\n" ;
     
    else
        echo "No\n";
     
    if(isBleak(4))
        echo "Yes\n" ;
     
    else
        echo "No\n";
         
// This code is contributed by anuj_67
?>


Javascript




<script>
    // An efficient JavaScript
    // program to check Bleak Number
     
    /* Function to get no of set
    bits in binary representation
    of passed binary no. */
    function countSetBits(x)
    {
        let count = 0;
        while (x != 0) {
            x &= (x - 1);
            count++;
        }
        return count;
    }
  
    // A function to return ceiling
    // of log x in base 2. For
    // example, it returns 3 for 8
    // and 4 for 9.
    function ceilLog2(x)
    {
        let count = 0;
        x--;
        while (x > 0) {
            x = x >> 1;
            count++;
        }
        return count;
    }
  
    // Returns true if n is Bleak
    function isBleak(n)
    {
          
        // Check for all numbers
        // 'x' smaller than n. If
        // x + countSetBits(x)
        // becomes n, then n
        // can't be Bleak
        for (let x = n - ceilLog2(n); x < n; x++)
            if (x + countSetBits(x) == n)
                return false;
  
        return true;
    }
     
    if (isBleak(3))
      document.write("Yes" + "</br>");
    else
      document.write("No" + "</br>");
 
    if (isBleak(4))
      document.write("Yes" + "</br>");
    else
      document.write("No" + "</br>");
     
</script>


Output: 

No
Yes

Time Complexity: O(Log n * Log n)

Auxiliary Space: O(1)
Note: In GCC, we can directly count set bits using __builtin_popcount(). So we can avoid a separate function for counting set bits.
 

CPP




// C++ program to demonstrate __builtin_popcount()
#include <iostream>
using namespace std;
 
int main()
{
    cout << __builtin_popcount(4) << endl;
    cout << __builtin_popcount(15);
 
    return 0;
}


Java




// Java program to demonstrate Integer.bitCount()
import java.util.*;
 
class GFG{
 
public static void main(String[] args)
{
    System.out.print(Integer.bitCount(4) +"\n");
    System.out.print(Integer.bitCount(15));
 
}
}
 
// This code is contributed by umadevi9616


Python3




# Python program to demonstrate Integer.bitCount()
 
def bitsoncount(i):
    assert 0 <= i < 0x100000000
    i = i - ((i >> 1) & 0x55555555)
    i = (i & 0x33333333) + ((i >> 2) & 0x33333333)
    return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24
 
# Driver code
if __name__ == '__main__':
    x = 4;
    y = 15;
    print(bitsoncount(x));
    print(bitsoncount(y));
 
# This code is contributed by umadevi9616


C#




// C# program to demonstrate int.bitCount()
using System;
 
public class GFG{
public static int bitCount (int n) {
      n = n - ((n >> 1) & 0x55555555);
      n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
      return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
    }
public static void Main(String[] args)
{
    Console.WriteLine(bitCount(4));
    Console.WriteLine(bitCount(15));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
    
// javascript program to demonstrate int.bitCount()
function bitCount ( n) {
      n = n - ((n >> 1) & 0x55555555);
      n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
      return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
    }
 
     document.write(bitCount(4)+"<br/>");
     document.write(bitCount(15));
 
// This code is contributed by gauravrajput1
</script>


Output : 

1
4

Time Complexity: O(log n)

Auxiliary Space: O(1)

This article is contributed by Rahuain. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

RELATED ARTICLES

Most Popular

Recent Comments