Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AICheck if a large number is divisibility by 15

Check if a large number is divisibility by 15

Given a very large number. Check its divisibility by 15.

Examples: 

Input: "31"
Output: No

Input : num = "156457463274623847239840239
402394085458848462385346236
482374823647643742374523747
264723762374620"
Output: Yes
Given number is divisible by 15

A number is divisible by 15 if it is divisible by 5 (if the last digit is 5 or 0), and it is divisible by 3 (if sum of digits is divisible by 3).

Below is the implementation of above approach.

C++




// CPP program to check if a large
// number is divisible by 15
#include <bits/stdc++.h>
  
using namespace std;
  
// function to check if a large number
// is divisible by 15
bool isDivisible(string s)
{
    // length of string
    int n = s.length();
  
    // check divisibility by 5
    if (s[n - 1] != '5' and s[n - 1] != '0')
        return false;
  
    // Sum of digits
    int sum = accumulate(begin(s), end(s), 0) - '0' * n;
  
    // if divisible by 3
    return (sum % 3 == 0);
}
  
// driver program
int main()
{
    string s = "15645746327462384723984023940239";
    isDivisible(s)? cout << "Yes\n": cout << "No\n";
    string s1 = "15645746327462384723984023940235";
    isDivisible(s1)? cout << "Yes\n": cout << "No\n";
    return 0;
}


Java




// Java program to check if a large
// number is divisible by 15
import java.util.*;
  
class GFG
{
       
// function to check if a large 
// number is divisible by 15
public static boolean isDivisible(String S)
{
    // length of string
    int n = S.length();
      
    // check divisibility by 5
    if (S.charAt(n - 1) != '5' && 
        S.charAt(n - 1) != '0')
        return false;
          
    // Sum of digits
    int sum = 0;
    for(int i = 0; i < S.length(); i++)
        sum += (int)S.charAt(i);
          
        // if divisible by 3
        if(sum % 3 == 0)
            return true;
        else
            return false;
}
      
// Driver code
public static void main (String[] args)
{
    String S = "15645746327462384723984023940239";
    if(isDivisible(S) == true)
        System.out.println("Yes");
    else
        System.out.println("No");
          
    String S1 = "15645746327462384723984023940235";
    if(isDivisible(S1) == true)
        System.out.println("Yes");
    else
        System.out.println("No");
    }
}
          
// This code is contributed 
// by Akanksha Rai(Abby_akku)


Python3




# Python3 program to check if 
# a large number is 
# divisible by 15
  
# to find sum
def accumulate(s): 
    acc = 0;
    for i in range(len(s)):
        acc += ord(s[i]) - 48;
    return acc;
  
# function to check 
# if a large number
# is divisible by 15
def isDivisible(s):
    # length of string
    n = len(s);
  
    # check divisibility by 5
    if (s[n - 1] != '5' and s[n - 1] != '0'):
        return False;
  
    # Sum of digits
    sum = accumulate(s);
      
    # if divisible by 3
    return (sum % 3 == 0);
  
  
# Driver Code
s = "15645746327462384723984023940239";
if isDivisible(s):
    print("Yes"); 
else:
    print("No");
  
s = "15645746327462384723984023940235";
if isDivisible(s):
    print("Yes");
else:
    print("No");
  
# This code is contributed by mits


C#




// C# program to check if a large
// number is divisible by 15
using System;
  
class GFG
// function to check if a large 
// number is divisible by 15
public static bool isDivisible(String S)
{
    // length of string
    int n = S.Length;
      
    // check divisibility by 5
    if (S[n - 1] != '5' &&
        S[n - 1] != '0')
        return false;
          
    // Sum of digits
    int sum = 0;
    for(int i = 0; i < S.Length; i++)
        sum += (int)S[i];
          
        // if divisible by 3
        if(sum % 3 == 0)
            return true;
        else
            return false;
}
      
// Driver code
public static void Main()
{
    String S = "15645746327462384723984023940239";
    if(isDivisible(S) == true)
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
          
    String S1 = "15645746327462384723984023940235";
    if(isDivisible(S1) == true)
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
    }
}
          
// This code is contributed 
// by mits


Javascript




<script>
// Javascript program to check if
// a large number is
// divisible by 15
// to find sum
  
function accumulate(s)
{
    let acc = 0;
    for(let i = 0;
        i < s.length; i++)
    {
        acc += s[i] - '0';
    }
    return acc;
}
  
// function to check
// if a large number
// is divisible by 15
function isDivisible(s)
{
  
    // length of string
    let n = s.length;
  
    // check divisibility by 5
    if (s[n - 1] != '5' &&
        s[n - 1] != '0')
        return false;
  
    // Sum of digits
    let sum = accumulate(s);
      
    // if divisible by 3
    return (sum % 3 == 0);
}
  
// Driver Code
let s = "15645746327462384723984023940239";
isDivisible(s) ?
document.write("Yes<br>") : document.write("No<br>");
  
s = "15645746327462384723984023940235";
isDivisible(s) ?
document.write("Yes<br>") : document.write("No<br>");
  
// This code is contributed by _saurabh_jaiswal
</script>


PHP




<?php
// PHP program to check if 
// a large number is 
// divisible by 15
  
// to find sum
function accumulate($s
{
    $acc = 0;
    for($i = 0; 
        $i < strlen($s); $i++)
    {
        $acc += $s[$i] - '0';
    }
    return $acc;
}
  
// function to check 
// if a large number
// is divisible by 15
function isDivisible($s)
{
    // length of string
    $n = strlen($s);
  
    // check divisibility by 5
    if ($s[$n - 1] != '5' &&
        $s[$n - 1] != '0')
        return false;
  
    // Sum of digits
    $sum = accumulate($s);
      
    // if divisible by 3
    return ($sum % 3 == 0);
}
  
// Driver Code
$s = "15645746327462384723984023940239";
isDivisible($s) ? 
print("Yes\n") : print("No\n");
  
$s = "15645746327462384723984023940235";
isDivisible($s) ? 
print("Yes\n") : print("No\n");
  
// This code is contributed by mits
?>


Output

No
Yes

Time complexity: O(number of digits) 
Auxiliary space: O(1)

This article is contributed by Striver. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments