Sunday, December 29, 2024
Google search engine
HomeData Modelling & AICheck if a given number is a Perfect square using Binary Search

Check if a given number is a Perfect square using Binary Search

Check if a given number N is a perfect square or not. If yes then return the number of which it is a perfect square, Else print -1.

Examples: 

Input: N = 4900 
Output 70 
Explanation: 
4900 is a perfect square number of 70 because 70 * 70 = 4900

Input: N = 81 
Output:
Explanation: 
81 is a perfect square number of 9 because 9 * 9 = 81 
 

Approach: To solve the problem mentioned above we will use the Binary Search Algorithm.  

  • Find the mid element from the start and last value and compare the value of the square of mid(mid*mid) with N.
  • If it is equal then return the mid otherwise check if the square(mid*mid) is greater than N then recursive call with the same start value but changed last to mid-1 value and if the square(mid*mid) is less than the N then recursive call with the same last value but changed start value.
  • If the N is not a square root then return -1.

Below is the implementation of above approach: 

C++




// C++ program to check if a
// given number is Perfect
// square using Binary Search
 
#include <iostream>
using namespace std;
 
// function to check for
// perfect square number
int checkPerfectSquare(
    long int N,
    long int start,
    long int last)
{
    // Find the mid value
    // from start and last
    long int mid = (start + last) / 2;
 
    if (start > last) {
        return -1;
    }
 
    // check if we got the number which
    // is square root of the perfect
    // square number N
    if (mid * mid == N) {
        return mid;
    }
 
    // if the square(mid) is greater than N
    // it means only lower values then mid
    // will be possibly the square root of N
    else if (mid * mid > N) {
        return checkPerfectSquare(
            N, start, mid - 1);
    }
 
    // if the square(mid) is less than N
    // it means only higher values then mid
    // will be possibly the square root of N
    else {
        return checkPerfectSquare(
            N, mid + 1, last);
    }
}
 
// Driver code
int main()
{
    long int N = 65;
 
    cout << checkPerfectSquare(N, 1, N);
    return 0;
}


Java




// Java program to check if a
// given number is Perfect
// square using Binary Search
import java.util.*;
 
class GFG {
 
// Function to check for
// perfect square number
static int checkPerfectSquare(long N,
                              long start,
                              long last)
{
    // Find the mid value
    // from start and last
    long mid = (start + last) / 2;
 
    if (start > last)
    {
        return -1;
    }
 
    // Check if we got the number which
    // is square root of the perfect
    // square number N
    if (mid * mid == N)
    {
        return (int)mid;
    }
 
    // If the square(mid) is greater than N
    // it means only lower values then mid
    // will be possibly the square root of N
    else if (mid * mid > N)
    {
        return checkPerfectSquare(N, start,
                                  mid - 1);
    }
 
    // If the square(mid) is less than N
    // it means only higher values then mid
    // will be possibly the square root of N
    else
    {
        return checkPerfectSquare(N, mid + 1,
                                  last);
    }
}
 
// Driver code
public static void main(String[] args)
{
    long N = 65;
    System.out.println(checkPerfectSquare(N, 1, N));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to check if a
# given number is perfect
# square using Binary Search
 
# Function to check for
# perfect square number
def checkPerfectSquare(N, start, last):
 
    # Find the mid value
    # from start and last
    mid = int((start + last) / 2)
 
    if (start > last):
        return -1
 
    # Check if we got the number which
    # is square root of the perfect
    # square number N
    if (mid * mid == N):
        return mid
 
    # If the square(mid) is greater than N
    # it means only lower values then mid
    # will be possibly the square root of N
    elif (mid * mid > N):
        return checkPerfectSquare(N, start,
                                  mid - 1)
 
    # If the square(mid) is less than N
    # it means only higher values then mid
    # will be possibly the square root of N
    else:
        return checkPerfectSquare(N, mid + 1,
                                  last)
 
# Driver code
N = 65
print (checkPerfectSquare(N, 1, N))
 
# This code is contributed by PratikBasu


C#




// C# program to check if a
// given number is Perfect
// square using Binary Search
using System;
 
class GFG{
 
// Function to check for
// perfect square number
public static int checkPerfectSquare(int N,
                                     int start,
                                     int last)
{
    // Find the mid value
    // from start and last
    int mid = (start + last) / 2;
 
    if (start > last)
    {
        return -1;
    }
 
    // Check if we got the number which
    // is square root of the perfect
    // square number N
    if (mid * mid == N)
    {
        return mid;
    }
 
    // If the square(mid) is greater than N
    // it means only lower values then mid
    // will be possibly the square root of N
    else if (mid * mid > N)
    {
        return checkPerfectSquare(N, start,
                                  mid - 1);
    }
 
    // If the square(mid) is less than N
    // it means only higher values then mid
    // will be possibly the square root of N
    else
    {
        return checkPerfectSquare(N, mid + 1,
                                  last);
    }
}
 
// Driver code
public static int Main()
{
    int N = 65;
 
    Console.Write(checkPerfectSquare(N, 1, N));
    return 0;
}
}
 
// This code is contributed by sayesha


Javascript




<script>
 
// Javascript program to check if a
// given number is Perfect
// square using Binary Search
 
// Function to check for
// perfect square number
function checkPerfectSquare(N, start, last)
{
     
    // Find the mid value
    // from start and last
    let mid = parseInt((start + last) / 2);
 
    if (start > last)
    {
        return -1;
    }
 
    // Check if we got the number which
    // is square root of the perfect
    // square number N
    if (mid * mid == N)
    {
        return mid;
    }
 
    // If the square(mid) is greater than N
    // it means only lower values then mid
    // will be possibly the square root of N
    else if (mid * mid > N)
    {
        return checkPerfectSquare(
            N, start, mid - 1);
    }
 
    // If the square(mid) is less than N
    // it means only higher values then mid
    // will be possibly the square root of N
    else
    {
        return checkPerfectSquare(
            N, mid + 1, last);
    }
}
 
// Driver code
let N = 65;
 
document.write(checkPerfectSquare(N, 1, N));
 
// This code is contributed by rishavmahato348
 
</script>


Output: 

-1

 

Time Complexity: O(Logn)
Auxiliary Space: O(Logn) for recursive stack space.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments