Check if a given number N is a perfect square or not. If yes then return the number of which it is a perfect square, Else print -1.
Examples:
Input: N = 4900
Output 70
Explanation:
4900 is a perfect square number of 70 because 70 * 70 = 4900Input: N = 81
Output: 9
Explanation:
81 is a perfect square number of 9 because 9 * 9 = 81
Approach: To solve the problem mentioned above we will use the Binary Search Algorithm.
- Find the mid element from the start and last value and compare the value of the square of mid(mid*mid) with N.
- If it is equal then return the mid otherwise check if the square(mid*mid) is greater than N then recursive call with the same start value but changed last to mid-1 value and if the square(mid*mid) is less than the N then recursive call with the same last value but changed start value.
- If the N is not a square root then return -1.
Below is the implementation of above approach:
C++
// C++ program to check if a // given number is Perfect // square using Binary Search #include <iostream> using namespace std; // function to check for // perfect square number int checkPerfectSquare( long int N, long int start, long int last) { // Find the mid value // from start and last long int mid = (start + last) / 2; if (start > last) { return -1; } // check if we got the number which // is square root of the perfect // square number N if (mid * mid == N) { return mid; } // if the square(mid) is greater than N // it means only lower values then mid // will be possibly the square root of N else if (mid * mid > N) { return checkPerfectSquare( N, start, mid - 1); } // if the square(mid) is less than N // it means only higher values then mid // will be possibly the square root of N else { return checkPerfectSquare( N, mid + 1, last); } } // Driver code int main() { long int N = 65; cout << checkPerfectSquare(N, 1, N); return 0; } |
Java
// Java program to check if a // given number is Perfect // square using Binary Search import java.util.*; class GFG { // Function to check for // perfect square number static int checkPerfectSquare( long N, long start, long last) { // Find the mid value // from start and last long mid = (start + last) / 2 ; if (start > last) { return - 1 ; } // Check if we got the number which // is square root of the perfect // square number N if (mid * mid == N) { return ( int )mid; } // If the square(mid) is greater than N // it means only lower values then mid // will be possibly the square root of N else if (mid * mid > N) { return checkPerfectSquare(N, start, mid - 1 ); } // If the square(mid) is less than N // it means only higher values then mid // will be possibly the square root of N else { return checkPerfectSquare(N, mid + 1 , last); } } // Driver code public static void main(String[] args) { long N = 65 ; System.out.println(checkPerfectSquare(N, 1 , N)); } } // This code is contributed by offbeat |
Python3
# Python3 program to check if a # given number is perfect # square using Binary Search # Function to check for # perfect square number def checkPerfectSquare(N, start, last): # Find the mid value # from start and last mid = int ((start + last) / 2 ) if (start > last): return - 1 # Check if we got the number which # is square root of the perfect # square number N if (mid * mid = = N): return mid # If the square(mid) is greater than N # it means only lower values then mid # will be possibly the square root of N elif (mid * mid > N): return checkPerfectSquare(N, start, mid - 1 ) # If the square(mid) is less than N # it means only higher values then mid # will be possibly the square root of N else : return checkPerfectSquare(N, mid + 1 , last) # Driver code N = 65 print (checkPerfectSquare(N, 1 , N)) # This code is contributed by PratikBasu |
C#
// C# program to check if a // given number is Perfect // square using Binary Search using System; class GFG{ // Function to check for // perfect square number public static int checkPerfectSquare( int N, int start, int last) { // Find the mid value // from start and last int mid = (start + last) / 2; if (start > last) { return -1; } // Check if we got the number which // is square root of the perfect // square number N if (mid * mid == N) { return mid; } // If the square(mid) is greater than N // it means only lower values then mid // will be possibly the square root of N else if (mid * mid > N) { return checkPerfectSquare(N, start, mid - 1); } // If the square(mid) is less than N // it means only higher values then mid // will be possibly the square root of N else { return checkPerfectSquare(N, mid + 1, last); } } // Driver code public static int Main() { int N = 65; Console.Write(checkPerfectSquare(N, 1, N)); return 0; } } // This code is contributed by sayesha |
Javascript
<script> // Javascript program to check if a // given number is Perfect // square using Binary Search // Function to check for // perfect square number function checkPerfectSquare(N, start, last) { // Find the mid value // from start and last let mid = parseInt((start + last) / 2); if (start > last) { return -1; } // Check if we got the number which // is square root of the perfect // square number N if (mid * mid == N) { return mid; } // If the square(mid) is greater than N // it means only lower values then mid // will be possibly the square root of N else if (mid * mid > N) { return checkPerfectSquare( N, start, mid - 1); } // If the square(mid) is less than N // it means only higher values then mid // will be possibly the square root of N else { return checkPerfectSquare( N, mid + 1, last); } } // Driver code let N = 65; document.write(checkPerfectSquare(N, 1, N)); // This code is contributed by rishavmahato348 </script> |
-1
Time Complexity: O(Logn)
Auxiliary Space: O(Logn) for recursive stack space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!