Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if a given number can be expressed as pair-sum of sum...

Check if a given number can be expressed as pair-sum of sum of first X natural numbers

Given an integer N, the task is to check if N is the sum of a pair of integers which can be expressed as the sum of first X natural numbers, where X can be any positive integer. If satisfies the required condition. Print “YES”. Otherwise, print “NO”.

Examples:

Input: N = 25
Output: YES
Explanation:
=> 10 + 15 = 25
Since 10 and 15 are the sum of first 4 and 5 natural numbers respectively, the answer is YES.

Input: N = 512
Output: NO

Approach: The idea is to choose a sum of natural numbers M which is less than equal to N and check if M and N – M are the sums of the sequence of the first few natural numbers. Follow the steps below to solve the problem:

  • Iterate over a loop to calculate the sum of K natural numbers:

 Sum of K natural numbers = K * (K + 1) / 2 

  • Then, calculate the remaining sum and check if the sum is the sum by the following equation:

 Y = N – Sum of K Natural number 
=> Y = N – (K * (K + 1) / 2) 

  • Check if the number calculated above satisfies the required condition by calculating the square root of the twice of the number and check if the product of consecutive numbers is equal to the twice of the number.

 M * (M + 1) == 2 * Y, where M = √ (2 * Y) 

  • If the above condition is satisfied, print “YES”. Otherwise, print “NO”.

Below is the implementation of the above approach:

C++




// C++ program of the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to check if the number
// is pair-sum of sum of first X
// natural numbers
void checkSumOfNatural(int n)
{
    int i = 1;
    bool flag = false;
     
    // Check if the given number
    // is sum of pair of special numbers
    while (i * (i + 1) < n * 2)
    {
         
        // X is the sum of first
        // i natural numbers
        int X = i * (i + 1);
         
        // t = 2 * Y
        int t = n * 2 - X;
        int k = sqrt(t);
         
        // Condition to check if
        // Y is a special number
        if (k * (k + 1) == t)
        {
            flag = true;
            break;
        }
        i += 1;
    }
     
    if (flag)
        cout << "YES";
    else
        cout << "NO";
}
 
// Driver Code
int main()
{
    int n = 25;
     
    // Function call
    checkSumOfNatural(n);
 
    return 0;
}
 
// This code is contributed by rutvik_56


Java




// Java program of the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
 
// Function to check if the number
// is pair-sum of sum of first X
// natural numbers
static void checkSumOfNatural(int n)
{
    int i = 1;
    boolean flag = false;
     
    // Check if the given number
    // is sum of pair of special numbers
    while (i * (i + 1) < n * 2)
    {
         
        // X is the sum of first
        // i natural numbers
        int X = i * (i + 1);
         
        // t = 2 * Y
        int t = n * 2 - X;
        int k = (int)Math.sqrt(t);
         
        // Condition to check if
        // Y is a special number
        if(k * (k + 1) == t)
        {
            flag = true;
            break;
        }
        i += 1;
    }
     
    if (flag)
        System.out.println("YES");
    else
        System.out.println("NO");
}
 
// Driver Code
public static void main (String[] args)
{
    int n = 25;
     
    // Function call
    checkSumOfNatural(n);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program of the
# above approach
 
import math
 
# Function to check if the number
# is pair-sum of sum of first X
# natural numbers
def checkSumOfNatural(n):
    i = 1
    flag = False
     
    # Check if the given number
    # is sum of pair of special numbers
    while i*(i + 1) < n * 2:
         
        # X is the sum of first
        # i natural numbers
        X = i*(i + 1)
         
        # t = 2 * Y
        t = n * 2 - X
        k = int(math.sqrt(t))
         
        # Condition to check if
        # Y is a special number
        if k*(k + 1) == t:
            flag = True
            break
        i += 1
     
    if flag:
        print('YES')
    else:
        print('NO')
 
# Driver Code       
if __name__ == "__main__":
    n = 25
     
    # Function Call
    checkSumOfNatural(n)


C#




// C# program of
// the above approach
using System;
class GFG{
 
// Function to check if the number
// is pair-sum of sum of first X
// natural numbers
static void checkSumOfNatural(int n)
{
  int i = 1;
  bool flag = false;
 
  // Check if the given number
  // is sum of pair of special numbers
  while (i * (i + 1) < n * 2)
  {
    // X is the sum of first
    // i natural numbers
    int X = i * (i + 1);
 
    // t = 2 * Y
    int t = n * 2 - X;
    int k = (int)Math.Sqrt(t);
 
    // Condition to check if
    // Y is a special number
    if(k * (k + 1) == t)
    {
      flag = true;
      break;
    }
    i += 1;
  }
 
  if (flag)
    Console.WriteLine("YES");
  else
    Console.WriteLine("NO");
}
 
// Driver Code
public static void Main(String[] args)
{
  int n = 25;
 
  // Function call
  checkSumOfNatural(n);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript program of the above approach// Function to check if the number
// is pair-sum of sum of first X
// natural numbers
function checkSumOfNatural(n)
{
    var i = 1;
    var flag = false;
     
    // Check if the given number
    // is sum of pair of special numbers
    while (i * (i + 1) < n * 2)
    {
         
        // X is the sum of first
        // i natural numbers
        var X = i * (i + 1);
         
        // t = 2 * Y
        var t = n * 2 - X;
        var k = parseInt(Math.sqrt(t));
         
        // Condition to check if
        // Y is a special number
        if(k * (k + 1) == t)
        {
            flag = true;
            break;
        }
        i += 1;
    }
     
    if (flag)
        document.write("YES");
    else
        document.write("NO");
}
 
// Driver Code
var n = 25;
     
// Function call
checkSumOfNatural(n);
 
// This code is contributed by Princi Singh
</script>


Output

YES






Time Complexity: O(N) 
Auxiliary Space: O(1) 

Approach 2 :

This code checks whether a given number n can be expressed as the sum of two special numbers, where a special number is defined as the sum of the first X natural numbers for some positive integer X.

The approach used in the code is as follows:

  1. Given a number n, calculate the largest value of X such that X*(X+1)/2 <= n. This is done using the quadratic formula for finding roots of the equation X*(X+1)/2 = n. We take the floor of the result because X must be an integer.
  2. For each value of i from 1 to X, calculate j = n – (i*(i+1))/2. This is the other number that n must be paired with to form the sum of two special numbers.
  3. Check whether j is greater than i and less than or equal to X. This ensures that i and j are distinct positive integers that are both less than or equal to X.
  4. If there exists such a pair of i and j, set the flag to true and break out of the loop.
  5. If flag is true, output “YES“, indicating that n can be expressed as the sum of two special numbers. Otherwise, output “NO”.

The time complexity of this algorithm is O(sqrt(n)), since the loop from 1 to X runs for at most sqrt(n) iterations.

C++




#include<bits/stdc++.h>
using namespace std;
 
// Function to check if the number
// is pair-sum of sum of first X
// natural numbers
void checkSumOfNatural(int n)
{
    // Calculate the largest X such that X*(X+1)/2 <= n
    int X = floor((-1 + sqrt(1 + 8 * n))/2);
     
    // Check if the given number
    // is sum of pair of special numbers
    bool flag = false;
    for (int i = 1; i <= X; i++) {
        int j = n - (i*(i+1))/2;
        if (j > i && j <= X) {
            flag = true;
            break;
        }
    }
     
    if (flag)
        cout << "YES";
    else
        cout << "NO";
}
 
// Driver Code
int main()
{
    int n = 25;
     
    // Function call
    checkSumOfNatural(n);
 
    return 0;
}


Java




import java.util.*;
 
public class GFG {
    // Function to check if the number is pair-sum of
  // sum of first X natural numbers
    public static void checkSumOfNatural(int n) {
        // Calculate the largest X such that X*(X+1)/2 <= n
        int X = (int) Math.floor((-1 + Math.sqrt(1 + 8 * n)) / 2);
 
        // Check if the given number is sum of pair of special numbers
        boolean flag = false;
        for (int i = 1; i <= X; i++) {
            int j = n - (i * (i + 1)) / 2;
            if (j > i && j <= X) {
                flag = true;
                break;
            }
        }
 
        if (flag)
            System.out.println("YES");
        else
            System.out.println("NO");
    }
 
    public static void main(String[] args) {
        int n = 25;
 
        // Function call
        checkSumOfNatural(n);
 
        // This code is contributed by Shivam Tiwari
    }
}


Python3




import math
 
# Function to check if the number
# is a pair-sum of the sum of the first X
# natural numbers
def checkSumOfNatural(n):
    # Calculate the largest X such that X*(X+1)/2 <= n
    X = int((-1 + math.sqrt(1 + 8 * n)) / 2)
 
    # Check if the given number is a sum of a pair of special numbers
    flag = False
    for i in range(1, X+1):
        j = n - (i * (i+1)) // 2
        if j > i and j <= X:
            flag = True
            break
 
    if flag:
        print("YES")
    else:
        print("NO")
 
# Driver Code
if __name__ == "__main__":
    n = 25
 
    # Function call
    checkSumOfNatural(n)


C#




using System;
 
class GFG
{
    // Function to check if the number
    // is a pair-sum of the sum of the first X
    // natural numbers
    static void CheckSumOfNatural(int n)
    {
        // Calculate the largest X such that X*(X+1)/2 <= n
        int X = (int)((-1 + Math.Sqrt(1 + 8 * n)) / 2);
 
        // Check if the given number is a sum of a pair of special numbers
        bool flag = false;
        for (int i = 1; i <= X; i++)
        {
            int j = n - (i * (i + 1)) / 2;
            if (j > i && j <= X)
            {
                flag = true;
                break;
            }
        }
 
        if (flag)
        {
            Console.WriteLine("YES");
        }
        else
        {
            Console.WriteLine("NO");
        }
    }
 
    // Driver Code
    static void Main(string[] args)
    {
        int n = 25;
 
        // Function call
        CheckSumOfNatural(n);
 
        // This code is Contributed By Shubham Tiwari.
    }
}


Javascript




function checkSumOfNatural(n) {
    // Calculate the largest X such that X*(X+1)/2 <= n
    let X = Math.floor((-1 + Math.sqrt(1 + 8 * n)) / 2);
 
    // Check if the given number is a sum of a pair of special numbers
    let flag = false;
    for (let i = 1; i <= X; i++) {
        let j = n - (i * (i + 1)) / 2;
        if (j > i && j <= X) {
            flag = true;
            break;
        }
    }
 
    if (flag) {
        console.log("YES");
    } else {
        console.log("NO");
    }
}
 
// Driver Code
let n = 25;
 
// Function call
checkSumOfNatural(n);
 
// This code is contributed by Shivam Tiwari.


Output

NO






Time Complexity : O(N) 
Auxiliary Space : O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments