Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AICheck if a given matrix can be converted to another given matrix...

Check if a given matrix can be converted to another given matrix by row and column exchanges

Given a matrix startMatrix and another matrix finalMatrix, the task is to check if startMatrix can be converted to finalMatrix by column exchanges and a row exchanges.

Examples:  

Input: start[][] = {{1, 2, 3, 4}, 
{5, 6, 7, 8} 
{9, 10, 11, 12}, 
{13, 14, 15, 16}}
final[][] = {{1, 4, 3, 2}, 
{5, 8, 7, 6}, 
{13, 16, 15, 14}, 
{9, 12, 11, 10}} 
Output: Yes 
Explanation: Exchanging 2nd and 4th column followed by 4th and 3rd row gives the desired matrix

Input: start[][] = {{1, 2, 3, 4}, 
{5, 6, 7, 8} 
{9, 10, 11, 12}, 
{13, 14, 15, 16}}
final[][] = {{1, 4, 3, 2}, 
{5, 6, 7, 8}, 
{13, 16, 15, 14}, 
{9, 12, 11, 10}} 
Output: No 
 

Approach: 
In order to solve this problem we just need to check whether the elements in all rows and columns in startMatrix are preserved in the finalMatrix matrix irrespective of their order. Any violation of this condition will ensure that the finalMatrix matrix can’t be obtained. Traverse a loop through every row and check if all elements of that row in startMatrix is present in a single row in finalMatrix. Then transpose both startMatrix and finalMatrix and repeat the same verification.

Below code is the implementation of the above approach:  

C++




// CPP program to check if a
// given matrix can be converted
// to another given matrix by row
// and column exchanges
#include <bits/stdc++.h>
using namespace std;
 
// Function to get transpose of a matrix
vector<vector<int>> getTranspose(vector<vector<int>> matrix)
{
  int n = matrix.size();
  vector<vector<int>> transpose(n, vector<int>(n));
  for (int i = 0; i < n; i++)
  {
    for (int j = 0; j < n; j++)
    {
      transpose[j][i] = matrix[i][j];
    }
  }
  return transpose;
}
 
// Function to check for row preservation
bool rowEquality(vector<vector<int>> s,
                 vector<vector<int>> f)
{
  vector<set<int>> sets, setf;
  unordered_map<int, int> map;
 
  // Creating sets from the initial matrix
  for (int i = 0; i < s.size(); i++)
  {
 
    // Create set for corresponding row
    set<int> sett;
 
    // Add first element to the set
    sett.insert(s[i][0]);
    sets.push_back(sett);
 
    // Store the row number in map
    map[s[i][0]] = i;
 
    // Add remaining elements to the set
    for (int j = 1; j < s.size(); j++)
    {
      sett.insert(s[i][j]);
    }
  }
 
  // Create sets for final matrix
  // and check with the initial matrix
  int rowIndex = -1;
  for (int i = 0; i < f.size(); i++)
  {
    rowIndex = -1;
    set<int> sett;
 
    for (int j = 0; j < f.size(); j++)
    {
      sett.insert(f[i][j]);
      if (map.find(f[i][j]) != map.end())
      {
        rowIndex = map[f[i][j]];
      }
    }
 
    setf.push_back(sett);
    if (setf[i] != sets[rowIndex])
      return true;
  }
 
  return false;
}
 
// Driver code
int main()
{
  vector<vector<int>> startMatrix = {
      {1, 2, 3, 4},
      {5, 6, 7, 8},
      {9, 10, 11, 12},
      {13, 14, 15, 16}
  };
  vector<vector<int>> finalMatrix = {
      {3, 4, 1, 2},
      {15, 16, 13, 14},
      {7, 8, 5, 6},
      {11, 12, 9, 10}
  };
 
  vector<vector<int>> startTranspose = getTranspose(startMatrix);
  vector<vector<int>> finalTranspose = getTranspose(finalMatrix);
 
  if (rowEquality(startMatrix, finalMatrix) &&
      rowEquality(startTranspose, finalTranspose))
    cout << "Yes" << endl;
  else
    cout << "No" << endl;
}
 
// This code is contributed by sanjeev2552


Java




// Java program to check if a
// given matrix can be converted
// to another given matrix by row
// and column exchanges
 
import java.util.*;
public class Solution{
 
    // Function to get transpose of a matrix
    static int[][] getTranspose(int[][] matrix){
        int n = matrix.length;
        int[][] transpose = new int[n][n];
        for(int i=0; i<n; i++){
            for(int j=0; j<n; j++){
                transpose[j][i] = matrix[i][j];
            }
        }
        return transpose;
    }
     
    // Function to check for row preservation
    static boolean rowEquality(int[][] s, int[][] f){
        ArrayList<Set<Integer>> sets = new ArrayList<>();
        ArrayList<Set<Integer>> setf = new ArrayList<>();
        HashMap<Integer,Integer> map = new HashMap<>();
         
        // Creating sets from the initial matrix
        for(int i=0; i<s.length; i++){   
            // Create set for corresponding row
            Set<Integer> set = new HashSet<Integer>();
            // Add first element to the set
            set.add(s[i][0]);
            sets.add(set);
            // Store the row number in map
            map.put(s[i][0], i);
            // Add remaining elements to the set
            for(int j=1; j<s.length; j++){
                set.add(s[i][j]);
            }
        }
         
        // Create sets for final matrix
        // and check with the initial matrix
        int rowIndex = -1;
        for(int i=0; i<f.length; i++){
             
            rowIndex = -1;
            Set<Integer> set = new HashSet<Integer>();
             
            for(int j=0; j<f.length; j++){
                set.add(f[i][j]);
                if(map.containsKey(f[i][j])){
                    rowIndex = map.get(f[i][j]);
                }
                 
            }
             
            setf.add(set);
            if(rowIndex != -1 && !setf.get(i).equals(
                               sets.get(rowIndex)))
                return false;
        }
         
        return true;
         
    }
     
    // Driver code
    public static void main(String []args){
         
        int[][] startMatrix = {{ 1, 2, 3, 4 },
                               { 5, 6, 7, 8 },
                               { 9, 10, 11, 12 },
                               { 13, 14, 15, 16 }};
        int[][] finalMatrix = {{ 3, 4, 1, 2 },
                               { 15, 16, 13, 14 },
                               { 7, 8, 5, 6 },
                               { 11, 12, 9, 10 }};
         
        int[][] startTranspose = getTranspose(startMatrix);
        int[][] finalTranspose = getTranspose(finalMatrix);
 
        if(rowEquality(startMatrix,finalMatrix) &&
           rowEquality(startTranspose,finalTranspose))
            System.out.println("Yes");
        else
            System.out.println("No");
         
    }
}


Python3




# Python3 program to check if a
# given matrix can be converted
# to another given matrix by row
# and column exchanges
 
# Function to get transpose of a matrix
def getTranspose(matrix):
    n = len(matrix)
    transpose = [[0 for i in range(n)] for j in range(n)]
    for i in range(n):
        for j in range(n):
            transpose[j][i] = matrix[i][j]
    return transpose
 
# Function to check for row preservation
def rowEquality(s, f):
    sets = []
    setf = []
    mp = {i : 0 for i in range(100)}
     
    # Creating sets from the initial matrix
    for i in range(len(s)):
         
        # Create set for corresponding row
        st = set()
         
        # Add first element to the set
        st.add(s[i][0])
        sets.append(st)
         
        # Store the row number in mp
        mp[s[i][0]] = i
         
        # Add remaining elements to the set
        for j in range(1, len(s)):
            st.add(s[i][j])
     
    # Create sets for final matrix
    # and check with the initial matrix
    rowIndex = -1
    for i in range(len(f)):
        rowIndex = -1;
        st1 = set()
         
        for j in range(len(f)):
            st1.add(f[i][j])
            if(f[i][j] in mp):
                rowIndex = mp[f[i][j]]
         
        setf.append(st1)
        if(rowIndex != -1 and setf[i] !=
           sets[rowIndex]):
            return True
     
    return False
     
#Driver code
if __name__ == '__main__':
    startMatrix = [[ 1, 2, 3, 4 ],
                    [ 5, 6, 7, 8 ],
                    [ 9, 10, 11, 12 ],
                    [ 13, 14, 15, 16 ]]
    finalMatrix = [[ 3, 4, 1, 2],
                        [ 15, 16, 13, 14 ],
                        [ 7, 8, 5, 6 ],
                        [ 11, 12, 9, 10 ]]
     
    startTranspose = getTranspose(startMatrix)
    finalTranspose = getTranspose(finalMatrix)
 
    if(rowEquality(startMatrix, finalMatrix) and
       rowEquality(startTranspose, finalTranspose)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by Samarth


C#




// C# program to check if a
// given matrix can be converted
// to another given matrix by row
// and column exchanges
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to get transpose of a matrix
static int[,] getTranspose(int[,] matrix)
{
    int n = matrix.GetLength(0);
    int[,] transpose = new int[n, n];
     
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            transpose[j, i] = matrix[i, j];
        }
    }
    return transpose;
}
 
// Function to check for row preservation
static bool rowEquality(int[,] s, int[,] f)
{
    List<HashSet<int>> sets = new List<HashSet<int>>();
    List<HashSet<int>> setf = new List<HashSet<int>>();
     
    Dictionary<int,
               int> map = new Dictionary<int,
                                         int>();
     
    // Creating sets from the initial matrix
    for(int i = 0; i < s.GetLength(0); i++)
    {
         
        // Create set for corresponding row
        HashSet<int> set = new HashSet<int>();
         
        // Add first element to the set
        set.Add(s[i, 0]);
        sets.Add(set);
         
        // Store the row number in map
        map.Add(s[i, 0], i);
         
        // Add remaining elements to the set
        for(int j = 1; j < s.GetLength(1); j++)
        {
            set.Add(s[i, j]);
        }
    }
     
    // Create sets for readonly matrix
    // and check with the initial matrix
    int rowIndex = -1;
     
    for(int i = 0; i < f.GetLength(0); i++)
    {
        rowIndex = -1;
        HashSet<int> set = new HashSet<int>();
         
        for(int j = 0; j < f.GetLength(1); j++)
        {
            set.Add(f[i, j]);
            if (map.ContainsKey(f[i, j]))
            {
                rowIndex = map[f[i, j]];
            }
        }
         
        setf.Add(set);
        if (rowIndex != -1 &&
           !setf[i].Equals(sets[rowIndex]))
            return true;
    }
    return false;
     
}
 
// Driver code
public static void Main(String []args)
{
    int[,] startMatrix = { { 1, 2, 3, 4 },
                           { 5, 6, 7, 8 },
                           { 9, 10, 11, 12 },
                           { 13, 14, 15, 16 } };
    int[,] finalMatrix = { { 3, 4, 1, 2 },
                           { 15, 16, 13, 14 },
                           { 7, 8, 5, 6 },
                           { 11, 12, 9, 10 } };
     
    int[,] startTranspose = getTranspose(startMatrix);
    int[,] finalTranspose = getTranspose(finalMatrix);
 
    if (rowEquality(startMatrix,finalMatrix) &&
        rowEquality(startTranspose,finalTranspose))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript program to check if a
// given matrix can be converted
// to another given matrix by row
// && column exchanges
 
// Function to get transpose of a matrix
function getTranspose(matrix){
    let n = matrix.length
    let transpose = new Array(n);
    for(let i=0;i<n;i++){
        transpose[i] = new Array(n).fill(0);
    }
    for(let i=0;i<n;i++){
        for(let j=0;j<n;j++){
            transpose[j][i] = matrix[i][j]
        }
    }
    return transpose
}
 
// Function to check for row preservation
function rowEquality(s, f){
    let sets = []
    let setf = []
    let mp = new Map();
    for(let i=0;i<100;i++){
        mp.set(i,0);
    }
     
    // Creating sets from the initial matrix
    for(let i=0;i<s.length;i++){
         
        // Create set for corresponding row
        let st = new Set()
         
        // Add first element to the set
        st.add(s[i][0])
        sets.push(st)
         
        // Store the row number in mp
        mp.set(s[i][0],i)
         
        // Add remaining elements to the set
        for(let j=1;j<s.length;j++)
            st.add(s[i][j])
    }
     
    // Create sets for final matrix
    // && check with the initial matrix
    let rowIndex = -1
    for(let i=0;i<f.length;i++){
        rowIndex = -1;
        let st1 = new Set()
         
        for(let j=0;j<f.length;j++){
            st1.add(f[i][j])
            if(mp.has(f[i][j]))
                rowIndex = mp.get(f[i][j])
        }
         
        setf.push(st1)
        if(rowIndex != -1 && setf[i] !=sets[rowIndex])
            return true
    }
     
    return false
}
     
//Driver code
 
let    startMatrix = [[ 1, 2, 3, 4 ],
                    [ 5, 6, 7, 8 ],
                    [ 9, 10, 11, 12 ],
                    [ 13, 14, 15, 16 ]]
let    finalMatrix = [[ 3, 4, 1, 2],
                        [ 15, 16, 13, 14 ],
                        [ 7, 8, 5, 6 ],
                        [ 11, 12, 9, 10 ]]
     
let    startTranspose = getTranspose(startMatrix)
let    finalTranspose = getTranspose(finalMatrix)
 
if(rowEquality(startMatrix, finalMatrix) && rowEquality(startTranspose, finalTranspose))
    document.write("Yes")
else
    document.write("No")
 
// This code is contributed by Shinjanpatra
 
</script>


Output: 

Yes

 

Time Complexity: O(N2)

Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments