Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck for formation of X with given operations

Check for formation of X with given operations

Given array A[] of size N, array B[] of size M, and integer X, the task for this problem is to tell whether number X is possible to form or not if any number from array A[] is added to any number of times stepwise and in each step sum of number should not be equal to any number from B[]. Print “Yes” if possible else “No”

Examples:

Input: A[] = {3, 4, 5}, B[] = {4, 5, 6, 8}, X = 15
Output: Yes
Explanation: Initially, we have a current value of zero let’s say curVal = 0

  • Step 1 : Add A[0] = 3 in current value, curVal = 3 and B[] does not have 3 so move is valid
  • Step 2 : Add A[1] = 4 in current value, curVal = 7 and B[] does not have 7 so move is valid
  • Step 3 : Add A[2] = 5 in current value, curVal = 12 and B[] does not have 12 so move is valid
  • Step 4 : Add A[0] = 3 in current value, curVal = 15  and B[] does not have 15 so move is valid

So 15 is possible to print “Yes”.

Input: A[] = {2, 3, 4, 5}, B[] = {3, 4, 5, 6}, X = 8
Output:  No 

Naive approach: The basic way to solve the problem is as follows:

The basic way to solve this problem is to generate all possible combinations by using a recursive approach.

Time Complexity: O(XN)
Auxiliary Space: O(1)

Efficient Approach/Memoization:  The above approach can be optimized based on the following idea:

Dynamic programming can be used to solve this problem:

  • dp[i] represents whether i is possible or not from any combination.
  • It can be observed that the recursive function is called exponential times. That means that some states are called repeatedly. 
  • So the idea is to store the value of each state. This can be done by storing the value of a state and whenever the function is called, returning the stored value without computing again.

 Recursion Tree of the first example.

  • Green is a valid move whereas red is an invalid move.
  • This is observed that at 11 and 12 same sub-tree is repeated as that part is already calculated simply return that part without calculating again (that is simply returning calculated values of repeated states).

Recursion Tree of the first example

Follow the steps below to solve the problem:

  • Create HashMap[] and mark all values from B[] as 1 in HashMap[].
  • Create a recursive function that takes one parameter i which represents the current value.
  • Call the recursive function for choosing all numbers from A[].
  • Base case if the current value is X return 1.
  • Create a 1d array of dp[100001] initially filled with -1.
  • If the answer for a particular state is computed then save it in dp[i].
  • If the answer for a particular state is already computed then just return dp[i].

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// DP table initialized with -1
int dp[100001];
 
// Recursive Function to tell whether X
// is possible or not
int recur(int i, int A[], int N, vector<int>& HashMap,
          int X)
{
 
    // Base case
    if (i == X) {
        return 1;
    }
 
    // Initializing ans to 0, false value
    int ans = 0;
 
    // Calling recursive function for all
    // possible moves
    for (int j = 0; j < N; j++) {
 
        // Call function
        if (i + A[j] <= X and !HashMap[i + A[j]])
            ans |= recur(i + A[j], A, N, HashMap, X);
    }
 
    // Save and return dp value
    return dp[i] = ans;
}
 
// Function to tell whether X is
// possible or not
void isPossible(int A[], int B[], int N, int M, int X)
{
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    // Creating HashMap
    vector<int> HashMap(100001, 0);
 
    // Marking all the B's which are
    // present in HashMap[]
    for (int i = 0; i < M; i++) {
 
        // B[i] exists
        HashMap[B[i]] = 1;
    }
 
    // Calling recursive function for
    // finding answer
    int ans = recur(0, A, N, HashMap, X);
 
    // If ans is 1 then
    if (ans)
        cout << "Yes" << endl;
 
    // Else
    else
        cout << "No" << endl;
}
 
// Driver Code
int main()
{
 
    // Input 1
    int A1[] = { 3, 4, 5 }, B1[] = { 4, 5, 6, 8 }, X1 = 15;
    int N1 = sizeof(A1) / sizeof(A1[0]);
    int M1 = sizeof(B1) / sizeof(B1[0]);
 
    // Function Call
    isPossible(A1, B1, N1, M1, X1);
 
    // Input 2
    int A2[] = { 2, 3, 4, 5 }, B2[] = { 3, 4, 5, 6 },
        X2 = 8;
    int N2 = sizeof(A2) / sizeof(A2[0]);
    int M2 = sizeof(B2) / sizeof(B2[0]);
 
    // Function Call
    isPossible(A2, B2, N2, M2, X2);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
  // Recursive Function to tell whether X
  // is possible or not
  public static int recur(int i, int[] A, int N,
                          int[] HashMap, int X, int[] dp)
  {
 
    // Base case
    if (i == X) {
      return 1;
    }
 
    // Check if value is already calculated
    if (dp[i] != -1) {
      return dp[i];
    }
 
    // Initializing ans to 0, false value
    int ans = 0;
 
    // Calling recursive function for all possible moves
    for (int j = 0; j < N; j++) {
 
      // Call function
      if (i + A[j] <= X && HashMap[i + A[j]] == 0) {
        ans |= recur(i + A[j], A, N, HashMap, X, dp);
      }
    }
 
    // Save and return dp value
    dp[i] = ans;
    return ans;
  }
 
  // Function to tell whether X is possible or not
  public static void isPossible(int[] A, int[] B, int N, int M, int X) {
 
    // Initializing dp array with - 1
    int[] dp = new int[X + 1];
    Arrays.fill(dp, -1);
 
    // Creating HashMap
    int[] HashMap = new int[100001];
 
    // Marking all the B's which are present in HashMap[]
    for (int i = 0; i < M; i++) {
 
      // B[i] exists
      HashMap[B[i]] = 1;
    }
 
    // Calling recursive function for finding answer
    int ans = recur(0, A, N, HashMap, X, dp);
 
    // If ans is 1 then
    if (ans == 1) {
      System.out.println("Yes");
    }
    // Else
    else {
      System.out.println("No");
    }
  }
 
  // Driver Code
  public static void main(String[] args) {
 
    // Input 1
    int[] A1 = {3, 4, 5};
    int[] B1 = {4, 5, 6, 8};
    int X1 = 15;
    int N1 = A1.length;
    int M1 = B1.length;
 
    // Function Call
    isPossible(A1, B1, N1, M1, X1);
 
    // Input 2
    int[] A2 = {2, 3, 4, 5};
    int[] B2 = {3, 4, 5, 6};
    int X2 = 8;
    int N2 = A2.length;
    int M2 = B2.length;
 
    // Function Call
    isPossible(A2, B2, N2, M2, X2);
  }
}


Python3




# Python code to implement the approach
 
# Recursive Function to tell whether X
# is possible or not
def recur(i, A, N, HashMap, X, dp):
 
    # Base case
    if i == X:
        return 1
 
    # Check if value is already calculated
    if dp[i] != -1:
        return dp[i]
 
    # Initializing ans to 0, false value
    ans = 0
 
    # Calling recursive function for all
    # possible moves
    for j in range(N):
 
        # Call function
        if i + A[j] <= X and not HashMap[i + A[j]]:
            ans |= recur(i + A[j], A, N, HashMap, X, dp)
 
    # Save and return dp value
    dp[i] = ans
    return ans
 
# Function to tell whether X is
# possible or not
def isPossible(A, B, N, M, X):
 
    # Initializing dp array with - 1
    dp = [-1] * (X+1)
 
    # Creating HashMap
    HashMap = [0] * (100001)
 
    # Marking all the B's which are
    # present in HashMap[]
    for i in range(M):
 
        # B[i] exists
        HashMap[B[i]] = 1
 
    # Calling recursive function for
    # finding answer
    ans = recur(0, A, N, HashMap, X, dp)
 
    # If ans is 1 then
    if ans:
        print("Yes")
    # Else
    else:
        print("No")
 
# Driver Code
if __name__ == '__main__':
 
    # Input 1
    A1 = [3, 4, 5]
    B1 = [4, 5, 6, 8]
    X1 = 15
    N1 = len(A1)
    M1 = len(B1)
 
    # Function Call
    isPossible(A1, B1, N1, M1, X1)
 
    # Input 2
    A2 = [2, 3, 4, 5]
    B2 = [3, 4, 5, 6]
    X2 = 8
    N2 = len(A2)
    M2 = len(B2)
 
    # Function Call
    isPossible(A2, B2, N2, M2, X2)


Javascript




// JavaScript code to implement the approach
 
// Recursive Function to tell whether X
// is possible or not
function recur(i, A, N, HashMap, X, dp) {
 
    // Base case
    if (i == X) {
        return 1;
    }
 
    // Check if value is already calculated
    if (dp[i] != -1) {
        return dp[i];
    }
 
    // Initializing ans to 0, false value
    let ans = 0;
 
    // Calling recursive function for all
    // possible moves
    for (let j = 0; j < N; j++) {
 
        // Call function
        if (i + A[j] <= X && !HashMap[i + A[j]]) {
            ans |= recur(i + A[j], A, N, HashMap, X, dp);
        }
    }
 
    // Save and return dp value
    dp[i] = ans;
    return ans;
}
 
// Function to tell whether X is
// possible or not
function isPossible(A, B, N, M, X) {
 
    // Initializing dp array with - 1
    let dp = new Array(X + 1).fill(-1);
     
    // Creating HashMap
    let HashMap = new Array(100001).fill(0);
 
    // Marking all the B's which are
    // present in HashMap[]
    for (let i = 0; i < M; i++) {
     
        // B[i] exists
        HashMap[B[i]] = 1;
    }
 
    // Calling recursive function for
    // finding answer
    let ans = recur(0, A, N, HashMap, X, dp);
     
    // If ans is 1 then
    if (ans) {
        console.log("Yes");
    }
    // Else
    else {
        console.log("No");
    }
}
 
// Driver Code
 
// Input 1
let A1 = [3, 4, 5];
let B1 = [4, 5, 6, 8];
let X1 = 15;
let N1 = A1.length;
let M1 = B1.length;
 
// Function Call
isPossible(A1, B1, N1, M1, X1);
 
// Input 2
let A2 = [2, 3, 4, 5];
let B2 = [3, 4, 5, 6];
let X2 = 8;
let N2 = A2.length;
let M2 = B2.length;
 
// Function Call
isPossible(A2, B2, N2, M2, X2);
 
// This code is contributed by prasad264


C#




// C# code to implement the approach
 
using System;
 
public class GFG {
    // DP table initialized with -1
    static int[] dp = new int[100001];
    // Recursive Function to tell whether X
    // is possible or not
    static int Recur(int i, int[] A, int N, int[] HashMap,
                     int X)
    {
        // Base case
        if (i == X)
            return 1;
 
        // Initializing ans to 0, false value
        int ans = 0;
 
        // Calling recursive function for all
        // possible moves
        for (int j = 0; j < N; j++) {
 
            // Call function
            if (i + A[j] <= X && HashMap[i + A[j]] == 0)
                ans |= Recur(i + A[j], A, N, HashMap, X);
        }
 
        // Save and return dp value
        return dp[i] = ans;
    }
 
    // Function to tell whether X is
    // possible or not
    static void IsPossible(int[] A, int[] B, int N, int M,
                           int X)
    {
        // Initializing dp array with -1
        Array.Fill(dp, -1);
 
        // Creating HashMap
        int[] HashMap = new int[100001];
 
        // Marking all the B's which are
        // present in HashMap[]
        for (int i = 0; i < M; i++) {
 
            // B[i] exists
            HashMap[B[i]] = 1;
        }
 
        // Calling recursive function for
        // finding answer
        int ans = Recur(0, A, N, HashMap, X);
 
        // If ans is 1 then
        if (ans == 1)
            Console.WriteLine("Yes");
 
        // Else
        else
            Console.WriteLine("No");
    }
 
    // Driver Code
    public static void Main()
    {
 
        // Input 1
        int[] A1 = { 3, 4, 5 };
        int[] B1 = { 4, 5, 6, 8 };
        int X1 = 15;
        int N1 = A1.Length;
        int M1 = B1.Length;
 
        // Function Call
        IsPossible(A1, B1, N1, M1, X1);
 
        // Input 2
        int[] A2 = { 2, 3, 4, 5 };
        int[] B2 = { 3, 4, 5, 6 };
        int X2 = 8;
        int N2 = A2.Length;
        int M2 = B2.Length;
 
        // Function Call
        IsPossible(A2, B2, N2, M2, X2);
    }
}


Output

Yes
No

Time Complexity: O(N * X)  
Auxiliary Space: O(X)

Last Updated :
20 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments