Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIChange in Median of given array after deleting given elements

Change in Median of given array after deleting given elements

Given two arrays arr1[] and arr2[]. The array arr1[] is sorted. The task is to print the change in the median after removing each element from array arr2[] one by one.

Note: The array arr2[] has only those elements that are present in array arr1[].

Examples: 

Input: arr1[] = {2, 4, 6, 8, 10}, arr2[] = {4, 6} 
Output: 1 1 
Explanation: 
Initially median is 6. 
After removing 4, array becomes arr1[] = {2, 6, 8, 10}, median = 7, therefore the difference is 7 – 6 = 1. 
After removing 6, array becomes arr1[] = {2, 8, 10}, median = 8, therefore the difference is 8 – 7 = 1.

Input: arr1[] = {1, 100, 250, 251}, arr2[] = {250, 1} 
Output: -75 75.5 
Explanation: 
Initially median is 175. 
After removing 250, array becomes arr1[] = {1, 100, 251}, median = 100, therefore the difference is 100 – 175 = -75. 
After removing 1, array becomes arr1[] = {100, 251}, median = 175.5, therefore the difference is 175.5 – 100 = 75.5. 

Approach: The idea is to traverse each element of the array arr2[] and remove each element from the array arr1[] and store the median of the array arr1[] after each removal of element in an array(say temp[]). Print the consecutive difference of the elements of the array to get change in median after removing elements from arr2[].

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the median change
// after removing elements from arr2[]
void medianChange(vector<int>& arr1,
                  vector<int>& arr2)
{
    int N = arr1.size();
  
    // To store the median
    vector<float> median;
  
    // Store the current median
  
    // If N is odd
    if (N & 1) {
        median
            .push_back(arr1[N / 2] * 1.0);
    }
  
    // If N is even
    else {
        median
            .push_back((arr1[N / 2]
                        + arr1[(N - 1) / 2])
                       / 2.0);
    }
  
    for (auto& x : arr2) {
  
        // Find the current element
        // in arr1
        auto it = find(arr1.begin(),
                       arr1.end(),
                       x);
  
        // Erase the element
        arr1.erase(it);
  
        // Decrement N
        N--;
  
        // Find the new median
        // and append
  
        // If N is odd
        if (N & 1) {
            median
                .push_back(arr1[N / 2] * 1.0);
        }
  
        // If N is even
        else {
            median
                .push_back((arr1[N / 2]
                            + arr1[(N - 1) / 2])
                           / 2.0);
        }
    }
  
    // Print the corresponding
    // difference of median
    for (int i = 0;
         i < median.size() - 1;
         i++) {
        cout << median[i + 1] - median[i]
             << ' ';
    }
}
  
// Driven Code
int main()
{
    // Given arrays
    vector<int> arr1 = { 2, 4, 6, 8, 10 };
    vector<int> arr2 = { 4, 6 };
  
    // Function Call
    medianChange(arr1, arr2);
  
    return 0;
}


Java




// Java program for the 
// above approach
import java.util.*;
  
class GFG{
      
// Function to find the median 
// change after removing elements 
// from arr2[]
public static void medianChange(List<Integer> arr1,
                                List<Integer> arr2)
{
    int N = arr1.size();
   
    // To store the median
    List<Integer> median = new ArrayList<>(); 
   
    // Store the current median
   
    // If N is odd
    if ((N & 1) != 0)
        median.add(arr1.get(N / 2) * 1);
   
    // If N is even
    else
        median.add((arr1.get(N / 2) + 
                    arr1.get((N - 1) / 2)) / 2);
   
    for(int x = 0; x < arr2.size(); x++)
    {
          
        // Find the current element
        // in arr1
        int it = arr1.indexOf(arr2.get(x));
   
        // Erase the element
        arr1.remove(it);
   
        // Decrement N
        N--;
   
        // Find the new median
        // and append
   
        // If N is odd
        if ((N & 1) != 0
        {
            median.add(arr1.get(N / 2) * 1);
        }
          
        // If N is even
        else 
        {
            median.add((arr1.get(N / 2) +
                        arr1.get((N - 1) / 2)) / 2);
        }
    }
   
    // Print the corresponding
    // difference of median
    for(int i = 0; i < median.size() - 1; i++)
    {
        System.out.print(median.get(i + 1) -
                         median.get(i) + " ");
    }
}
  
// Driver Code              
public static void main(String[] args)
{
      
    // Given arrays
    List<Integer> arr1  = new ArrayList<Integer>(){
        { add(2); add(4); add(6); add(8); add(10); } };
    List<Integer> arr2 = new ArrayList<Integer>(){
        { add(4); add(6); } };
   
    // Function Call
    medianChange(arr1, arr2);
}
}
  
// This code is contributed by divyesh072019


Python3




# Python3 program for the 
# above approach
  
# Function to find the median 
# change after removing elements 
# from arr2[]
def medianChange(arr1, arr2):
  
    N = len(arr1)
  
    # To store the median
    median = []
  
    # Store the current median
  
    # If N is odd
    if (N & 1):
        median.append(arr1[N // 2] * 1)
  
    # If N is even
    else:
        median.append((arr1[N // 2] + 
                       arr1[(N - 1) // 2]) // 2)
  
    for x in arr2:
  
        # Find the current 
        # element in arr1
        it = arr1.index(x)
  
        # Erase the element
        arr1.pop(it)
  
        # Decrement N
        N -= 1
  
        # Find the new median
        # and append
  
        # If N is odd
        if (N & 1):
            median.append(arr1[N // 2] * 1)
  
        # If N is even
        else:
            median.append((arr1[N // 2] + 
                           arr1[(N - 1) // 2]) // 2)
  
    # Print the corresponding
    # difference of median
    for i in range(len(median) - 1):
        print(median[i + 1] - median[i],
              end = ' ')
  
# Driver Code
if __name__ == "__main__":
  
    # Given arrays
    arr1 = [2, 4, 6
            8, 10]
    arr2 = [4, 6]
  
    # Function Call
    medianChange(arr1, arr2)
  
# This code is contributed by Chitranayal


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
      
// Function to find the median change
// after removing elements from arr2[]
static void medianChange(List<int> arr1,
                         List<int> arr2)
{
    int N = arr1.Count;
   
    // To store the median
    List<double> median = new List<double>(); 
   
    // Store the current median
   
    // If N is odd
    if ((N & 1) != 0) 
    {
        median.Add(arr1[N / 2] * 1.0);
    }
   
    // If N is even
    else 
    {
        median.Add((arr1[N / 2] + 
              arr1[(N - 1) / 2]) / 2.0);
    }
   
    foreach(int x in arr2)
    {
          
        // Find the current element
        // in arr1
        int it = arr1.IndexOf(x);
   
        // Erase the element
        arr1.RemoveAt(it);
   
        // Decrement N
        N--;
   
        // Find the new median
        // and append
   
        // If N is odd
        if ((N & 1) != 0)
        {
            median.Add(arr1[N / 2] * 1.0);
        }
   
        // If N is even
        else 
        {
            median.Add((arr1[N / 2] +
                  arr1[(N - 1) / 2]) / 2.0);
        }
    }
   
    // Print the corresponding
    // difference of median
    for(int i = 0; i < median.Count - 1; i++)
    {
        Console.Write(median[i + 1] - 
                      median[i] + " ");
    }
}
  
// Driver Code
static void Main() 
{
      
    // Given arrays
    List<int> arr1 = new List<int>(
        new int[]{ 2, 4, 6, 8, 10 });
    List<int> arr2 = new List<int>(
        new int[]{ 4, 6 });
   
    // Function Call
    medianChange(arr1, arr2);
}
}
  
// This code is contributed by divyeshrabadiya07


Javascript




<script>
  
// JavaScript program for the
// above approach
  
// Function to find the median
// change after removing elements
// from arr2[]
function medianChange(arr1,arr2)
{
    let N = arr1.length;
    
    // To store the median
    let median = [];
    
    // Store the current median
    
    // If N is odd
    if ((N & 1))
        median.push((arr1[(Math.floor(N / 2))] * 1));
    
    // If N is even
    else
        median.push(Math.floor((arr1[(Math.floor(N / 2))] +
        arr1[(Math.floor((N - 1) / 2))]) / 2));
    
    for(let x = 0; x < arr2.length; x++)
    {
           
        // Find the current element
        // in arr1
        let it = arr1.indexOf(arr2[x]);
        // Erase the element
        arr1.splice(it,1);
    
        // Decrement N
        N--;
    
        // Find the new median
        // and append
    
        // If N is odd
        if ((N & 1))
        {
            median.push(arr1[(Math.floor(N / 2))] * 1);
        }
           
        // If N is even
        else
        {
            median.push(Math.floor((arr1[(Math.floor(N / 2))] +
            arr1[(Math.floor((N - 1) / 2))]) / 2));
        }
    }
    // Print the corresponding
    // difference of median
    for(let i = 0; i < median.length - 1; i++)
    {
        document.write((median[i + 1] -
                         median[i]) + " ");
    }
}
// Driver Code
  
// Given arrays
let arr1 = [2, 4, 6,
            8, 10];
let arr2 = [4, 6];
  
// Function Call
medianChange(arr1, arr2)
  
  
// This code is contributed by avanitrachhadiya2155
  
</script>


Output: 

1 1

 

Time Complexity: O(M*N)  
Auxiliary Space: O(M * N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments