We are aware of calculating factorials using loops or recursion, but if we are asked to calculate factorial without using any loop or recursion. Yes, this is possible through a well-known approximation algorithm known as Stirling approximation.
Examples:
Input : n = 6
Output : 720Input : n = 2
Output : 2
Stirling approximation: is an approximation for calculating factorials. It is also useful for approximating the log of a factorial.
n! ~ sqrt(2*pi*n) * pow((n/e), n)
Note: This formula will not give the exact value of the factorial because it is just the approximation of the factorial.
C++
// CPP program for calculating factorial // of a number using Stirling // Approximation #include <bits/stdc++.h> using namespace std; // function for calculating factorial long int stirlingFactorial( int n) { if (n == 1) return 1; long int z; float e = 2.71; // value of natural e // evaluating factorial using // stirling approximation z = sqrt (2 * 3.14 * n) * pow ((n / e), n); return z; } // driver program int main() { cout << stirlingFactorial(1) << endl; cout << stirlingFactorial(2) << endl; cout << stirlingFactorial(3) << endl; cout << stirlingFactorial(4) << endl; cout << stirlingFactorial(5) << endl; cout << stirlingFactorial(6) << endl; cout << stirlingFactorial(7) << endl; return 0; } |
Java
// Java program for calculating // factorial of a number using // Stirling Approximation class GFG { // function for // calculating factorial public static int stirlingFactorial( double n) { if (n == 1 ) return 1 ; double z; double e = 2.71 ; // value of natural e // evaluating factorial using // stirling approximation z = Math.sqrt( 2 * 3.14 * n) * Math.pow((n / e), n); return ( int )(z); } // Driver Code public static void main(String[] args) { System.out.println(stirlingFactorial( 1 )); System.out.println(stirlingFactorial( 2 )); System.out.println(stirlingFactorial( 3 )); System.out.println(stirlingFactorial( 4 )); System.out.println(stirlingFactorial( 5 )); System.out.println(stirlingFactorial( 6 )); System.out.println(stirlingFactorial( 7 )); } } // This code is contributed by mits. |
Python3
# Python3 program for calculating # factorial of a number using # Stirling Approximation import math # Function for calculating factorial def stirlingFactorial(n): if (n = = 1 ): return 1 # value of natural e e = 2.71 # evaluating factorial using # stirling approximation z = (math.sqrt( 2 * 3.14 * n) * math. pow ((n / e), n)) return math.floor(z) # Driver Code print (stirlingFactorial( 1 )) print (stirlingFactorial( 2 )) print (stirlingFactorial( 3 )) print (stirlingFactorial( 4 )) print (stirlingFactorial( 5 )) print (stirlingFactorial( 6 )) print (stirlingFactorial( 7 )) # This code is contributed by mits |
C#
// C# program for calculating // factorial of a number using // Stirling Approximation class GFG { // function for // calculating factorial public static int stirlingFactorial( double n) { if (n == 1) return 1; double z; double e = 2.71; // value of natural e // evaluating factorial using // stirling approximation z = System.Math.Sqrt(2 * 3.14 * n) * System.Math.Pow((n / e), n); return ( int )(z); } // Driver Code public static void Main() { System.Console.WriteLine(stirlingFactorial(1)); System.Console.WriteLine(stirlingFactorial(2)); System.Console.WriteLine(stirlingFactorial(3)); System.Console.WriteLine(stirlingFactorial(4)); System.Console.WriteLine(stirlingFactorial(5)); System.Console.WriteLine(stirlingFactorial(6)); System.Console.WriteLine(stirlingFactorial(7)); } } // This code is contributed by mits. |
PHP
<?php // PHP program for calculating factorial // of a number using Stirling // Approximation // Function for calculating factorial function stirlingFactorial( $n ) { if ( $n == 1) return 1; $z ; // value of natural e $e = 2.71; // evaluating factorial using // stirling approximation $z = sqrt(2 * 3.14 * $n ) * pow(( $n / $e ), $n ); return floor ( $z ); } // Driver Code echo stirlingFactorial(1), "\n" ; echo stirlingFactorial(2) , "\n" ; echo stirlingFactorial(3) , "\n" ; echo stirlingFactorial(4), "\n" ; echo stirlingFactorial(5) , "\n" ; echo stirlingFactorial(6) , " \n" ; echo stirlingFactorial(7) , " \n" ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program for calculating factorial // of a number using Stirling // Approximation // Function for calculating factorial function stirlingFactorial(n) { if (n == 1) return 1; let z; // value of natural e let e = 2.71; // evaluating factorial using // stirling approximation z = Math.sqrt(2 * 3.14 * n) * Math.pow((n / e), n); return Math.floor(z); } // Driver Code document.write( stirlingFactorial(1) + "<br>" ); document.write( stirlingFactorial(2) + "<br>" ); document.write( stirlingFactorial(3) + "<br>" ); document.write( stirlingFactorial(4) + "<br>" ); document.write( stirlingFactorial(5) + "<br>" ); document.write( stirlingFactorial(6) + "<br>" ); document.write( stirlingFactorial(7) + "<br>" ); // This code is contributed by _saurabh_jaiswal. </script> |
Time complexity: O(logn)
Auxiliary space: O(1)
This article is contributed by Shivam Pradhan (anuj_charm). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!