Saturday, December 28, 2024
Google search engine
HomeData Modelling & AICalculating Factorials using Stirling Approximation

Calculating Factorials using Stirling Approximation

We are aware of calculating factorials using loops or recursion, but if we are asked to calculate factorial without using any loop or recursion. Yes, this is possible through a well-known approximation algorithm known as Stirling approximation

Examples: 

Input : n = 6
Output : 720

Input : n = 2
Output : 2

 

Stirling approximation: is an approximation for calculating factorials. It is also useful for approximating the log of a factorial. 
n! ~ sqrt(2*pi*n) * pow((n/e), n) 
Note: This formula will not give the exact value of the factorial because it is just the approximation of the factorial.
 

C++




// CPP program for calculating factorial
// of a number using Stirling
// Approximation
#include <bits/stdc++.h>
using namespace std;
  
// function for calculating factorial
long int stirlingFactorial(int n)
{
    if (n == 1)
        return 1;
    long int z;
    float e = 2.71; // value of natural e
  
    // evaluating factorial using
    // stirling approximation
    z = sqrt(2 * 3.14 * n) * pow((n / e), n);
    return z;
}
  
// driver program
int main()
{
    cout << stirlingFactorial(1) << endl;
    cout << stirlingFactorial(2) << endl;
    cout << stirlingFactorial(3) << endl;
    cout << stirlingFactorial(4) << endl;
    cout << stirlingFactorial(5) << endl;
    cout << stirlingFactorial(6) << endl;
    cout << stirlingFactorial(7) << endl;
    return 0;
}


Java




// Java program for calculating
// factorial of a number using 
// Stirling Approximation 
class GFG
{
      
// function for 
// calculating factorial
public static int stirlingFactorial(double n)
{
    if (n == 1)
        return 1;
    double z;
    double e = 2.71; // value of natural e
      
    // evaluating factorial using
    // stirling approximation
    z = Math.sqrt(2 * 3.14 * n) *
        Math.pow((n / e), n);
    return (int)(z);
}
  
// Driver Code
public static void main(String[] args)
{
    System.out.println(stirlingFactorial(1));
    System.out.println(stirlingFactorial(2));
    System.out.println(stirlingFactorial(3));
    System.out.println(stirlingFactorial(4));
    System.out.println(stirlingFactorial(5));
    System.out.println(stirlingFactorial(6));
    System.out.println(stirlingFactorial(7));
}
}
  
// This code is contributed by mits.


Python3




# Python3 program for calculating 
# factorial of a number using 
# Stirling Approximation 
import math
  
# Function for calculating factorial
def stirlingFactorial(n):
    if (n == 1):
        return 1
      
    # value of natural e
    e = 2.71
      
    # evaluating factorial using
    # stirling approximation
    z = (math.sqrt(2 * 3.14 * n) * math.pow((n / e), n))
    return math.floor(z)
  
# Driver Code
print(stirlingFactorial(1))
print(stirlingFactorial(2))
print(stirlingFactorial(3))
print(stirlingFactorial(4))
print(stirlingFactorial(5))
print(stirlingFactorial(6))
print(stirlingFactorial(7))
  
# This code is contributed by mits


C#




// C# program for calculating
// factorial of a number using 
// Stirling Approximation 
  
class GFG
{
      
// function for 
// calculating factorial
public static int stirlingFactorial(double n)
{
    if (n == 1)
        return 1;
    double z;
    double e = 2.71; // value of natural e
      
    // evaluating factorial using
    // stirling approximation
    z = System.Math.Sqrt(2 * 3.14 * n) *
        System.Math.Pow((n / e), n);
    return (int)(z);
}
  
// Driver Code
public static void Main()
{
    System.Console.WriteLine(stirlingFactorial(1));
    System.Console.WriteLine(stirlingFactorial(2));
    System.Console.WriteLine(stirlingFactorial(3));
    System.Console.WriteLine(stirlingFactorial(4));
    System.Console.WriteLine(stirlingFactorial(5));
    System.Console.WriteLine(stirlingFactorial(6));
    System.Console.WriteLine(stirlingFactorial(7));
}
}
  
// This code is contributed by mits.


PHP




<?php
// PHP program for calculating factorial 
// of a number using Stirling 
// Approximation 
  
// Function for calculating factorial
function stirlingFactorial($n)
{
    if ($n == 1)
        return 1;
    $z;
      
    // value of natural e
    $e = 2.71; 
      
    // evaluating factorial using
    // stirling approximation
    $z = sqrt(2 * 3.14 * $n) * 
         pow(($n / $e), $n);
    return floor($z);
}
  
    // Driver Code
    echo stirlingFactorial(1),"\n";
    echo stirlingFactorial(2) ,"\n";
    echo stirlingFactorial(3) ,"\n";
    echo stirlingFactorial(4), "\n" ;
    echo stirlingFactorial(5) ,"\n";
    echo stirlingFactorial(6) ," \n";
    echo stirlingFactorial(7) ," \n";
  
// This code is contributed by anuj_67.
?>


Javascript




<script>
// Javascript program for calculating factorial 
// of a number using Stirling 
// Approximation 
  
// Function for calculating factorial
function stirlingFactorial(n)
{
    if (n == 1)
        return 1;
    let z;
      
    // value of natural e
    let e = 2.71; 
      
    // evaluating factorial using
    // stirling approximation
    z = Math.sqrt(2 * 3.14 * n) * 
         Math.pow((n / e), n);
    return Math.floor(z);
}
  
    // Driver Code
    document.write( stirlingFactorial(1) + "<br>");
    document.write( stirlingFactorial(2) + "<br>");
    document.write( stirlingFactorial(3) + "<br>");
    document.write( stirlingFactorial(4) + "<br>");
    document.write( stirlingFactorial(5) + "<br>");
    document.write( stirlingFactorial(6) + "<br>");
    document.write( stirlingFactorial(7) + "<br>");
  
// This code is contributed by _saurabh_jaiswal.
</script>


Time complexity: O(logn)
Auxiliary space: O(1)

This article is contributed by Shivam Pradhan (anuj_charm). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments