Friday, January 3, 2025
Google search engine
HomeData Modelling & AICalculate the value of 2 raised to the power of twice the...

Calculate the value of 2 raised to the power of twice the binary representation of N

Given a positive integer N, the task is to find the value of (22 * X), where X is the binary representation of N. Since the answer can be very large, print it modulo 109 + 7
Examples:

Input: N = 2 
Output: 1048576 
Explanation: 
The binary representation of 2 is (10)2
Therefore, the value of (22 * 10) % (109 + 7) = (220) % (109 + 7) = 1048576

Input: N = 150 
Output: 654430484 
 

Naive Approach: The simplest approach to solve this problem is to generate the binary representation of N, say X, and calculate the value of (22 * X) % (109 + 7) using modular exponentiation:

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
#define M 1000000007
 
// Function to find the value
// of power(X, Y) in O(log Y)
long long power(long long X,
                long long Y)
{
    // Stores power(X, Y)
    long long res = 1;
 
    // Update X
    X = X % M;
 
    // Base Case
    if (X == 0)
        return 0;
 
    // Calculate power(X, Y)
    while (Y > 0) {
 
        // If Y is an odd number
        if (Y & 1) {
 
            // Update res
            res = (res * X) % M;
        }
 
        // Update Y
        Y = Y >> 1;
 
        // Update X
        X = (X * X) % M;
    }
 
    return res;
}
 
// Function to calculate
// (2^(2 * x)) % (10^9 + 7)
int findValue(long long int n)
{
 
    // Stores binary
    // representation of n
    long long X = 0;
 
    // Stores power of 10
    long long pow_10 = 1;
 
    // Calculate the binary
    // representation of n
    while (n) {
 
        // If n is an odd number
        if (n & 1) {
 
            // Update X
            X += pow_10;
        }
 
        // Update pow_10
        pow_10 *= 10;
 
        // Update n
        n /= 2;
    }
 
    // Double the value of X
    X = (X * 2) % M;
 
    // Stores the value of
    // (2^(2 * x)) % (10^9 + 7)
    long long res = power(2, X);
 
    return res;
}
 
// Driver Code
int main()
{
 
    long long n = 2;
    cout << findValue(n);
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG
{
 
  static int M  = 1000000007;
 
  // Function to find the value
  // of power(X, Y) in O(log Y)
  static int  power(int  X,
                    int  Y)
  {
 
    // Stores power(X, Y)
    int  res = 1;
 
    // Update X
    X = X % M;
 
    // Base Case
    if (X == 0)
      return 0;
 
    // Calculate power(X, Y)
    while (Y > 0)
    {
 
      // If Y is an odd number
      if ((Y & 1) != 0)
      {
 
        // Update res
        res = (res * X) % M;
      }
 
      // Update Y
      Y = Y >> 1;
 
      // Update X
      X = (X * X) % M;
    }
    return res;
  }
  
  // Function to calculate
  // (2^(2 * x)) % (10^9 + 7)
  static int findValue(int n)
  {
 
    // Stores binary
    // representation of n
    int  X = 0;
 
    // Stores power of 10
    int  pow_10 = 1;
 
    // Calculate the binary
    // representation of n
    while (n != 0)
    {
 
      // If n is an odd number
      if ((n & 1) != 0)
      {
 
        // Update X
        X += pow_10;
      }
 
      // Update pow_10
      pow_10 *= 10;
 
      // Update n
      n /= 2;
    }
 
    // Double the value of X
    X = (X * 2) % M;
 
    // Stores the value of
    // (2^(2 * x)) % (10^9 + 7)
    int  res = power(2, X);
    return res;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int  n = 2;
    System.out.println(findValue(n));
  }
}
 
// This code is contributed by susmitakundugoaldanga.


Python3




# Python3 program to implement
# the above approach
M = 1000000007
 
# Function to find the value
# of power(X, Y) in O(log Y)
def power(X, Y):
     
    # Stores power(X, Y)
    res = 1
 
    # Update X
    X = X % M
 
    # Base Case
    if (X == 0):
        return 0
 
    # Calculate power(X, Y)
    while (Y > 0):
 
        # If Y is an odd number
        if (Y & 1):
 
            # Update res
            res = (res * X) % M
 
        # Update Y
        Y = Y >> 1
 
        # Update X
        X = (X * X) % M
 
    return res
 
# Function to calculate
# (2^(2 * x)) % (10^9 + 7)
def findValue(n):
 
    # Stores binary
    # representation of n
    X = 0
 
    # Stores power of 10
    pow_10 = 1
 
    # Calculate the binary
    # representation of n
    while(n):
 
        # If n is an odd number
        if (n & 1):
             
            # Update X
            X += pow_10
 
        # Update pow_10
        pow_10 *= 10
 
        # Update n
        n //= 2
 
    # Double the value of X
    X = (X * 2) % M
 
    # Stores the value of
    # (2^(2 * x)) % (10^9 + 7)
    res = power(2, X)
 
    return res
 
# Driver Code
if __name__ == "__main__":
 
    n = 2
     
    print(findValue(n))
     
# This code is contributed by AnkThon


C#




// C# program to implement
// the above approach
using System;
class GFG
{
 
  static int M  = 1000000007;
 
  // Function to find the value
  // of power(X, Y) in O(log Y)
  static int  power(int  X,
                    int  Y)
  {
 
    // Stores power(X, Y)
    int  res = 1;
 
    // Update X
    X = X % M;
 
    // Base Case
    if (X == 0)
      return 0;
 
    // Calculate power(X, Y)
    while (Y > 0)
    {
 
      // If Y is an odd number
      if ((Y & 1) != 0)
      {
 
        // Update res
        res = (res * X) % M;
      }
 
      // Update Y
      Y = Y >> 1;
 
      // Update X
      X = (X * X) % M;
    }
    return res;
  }
  
  // Function to calculate
  // (2^(2 * x)) % (10^9 + 7)
  static int findValue(int n)
  {
 
    // Stores binary
    // representation of n
    int  X = 0;
 
    // Stores power of 10
    int  pow_10 = 1;
 
    // Calculate the binary
    // representation of n
    while (n != 0)
    {
 
      // If n is an odd number
      if ((n & 1) != 0)
      {
 
        // Update X
        X += pow_10;
      }
 
      // Update pow_10
      pow_10 *= 10;
 
      // Update n
      n /= 2;
    }
 
    // Double the value of X
    X = (X * 2) % M;
 
    // Stores the value of
    // (2^(2 * x)) % (10^9 + 7)
    int  res = power(2, X);
    return res;
  }
 
  // Driver code
  public static void Main(String[] args)
  {
    int  n = 2;
    Console.WriteLine(findValue(n));
  }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// javascript program to implement
// the above approach
  M  = 1000000007;
 
  // Function to find the value
  // of power(X, Y) in O(log Y)
function  power( X,Y)
{
 
    // Stores power(X, Y)
var  res = 1;
 
// Update X
X = X % M;
 
// Base Case
if (X == 0)
  return 0;
 
// Calculate power(X, Y)
while (Y > 0)
{
 
  // If Y is an odd number
  if ((Y & 1) != 0)
  {
 
    // Update res
    res = (res * X) % M;
  }
 
  // Update Y
  Y = Y >> 1;
 
  // Update X
      X = (X * X) % M;
    }
    return res;
  }
  
  // Function to calculate
  // (2^(2 * x)) % (10^9 + 7)
  function findValue(n)
  {
 
    // Stores binary
// representation of n
var  X = 0;
 
// Stores power of 10
var  pow_10 = 1;
 
// Calculate the binary
// representation of n
while (n != 0)
{
 
  // If n is an odd number
  if ((n & 1) != 0)
  {
 
    // Update X
    X += pow_10;
  }
 
  // Update pow_10
  pow_10 *= 10;
 
  // Update n
  n /= 2;
}
 
// Double the value of X
X = (X * 2) % M;
 
// Stores the value of
// (2^(2 * x)) % (10^9 + 7)
    var  res = power(2, X);
    return res;
  }
 
 // Driver code
 
var  n = 2;
document.write(findValue(n));
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

1048576

 

Time Complexity: O(log2(X)), where X is the binary representation of N 
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using Dynamic programming based on the following observations:

If N == 1 then the required output is (21)2 = (21)2 
If N == 2 then the required output is (210)2 = (210)2 
If N == 3 then the required output is (211)2 = (210 * 21)2 
If N == 4 then the required output is (2100)2 = (2100)2 
If N == 5 then the required output is (2101)2 = (2100 * 21)2 
……………………….. 
Below is the relation between the dynamic programming states: 
If N is a power of 2, then dp[N] = power(dp[N / 2], 10) 
Otherwise, dp[N] = dp[(N & (-N))] * dp[N – (N & (-N))] 
dp[N]2: Stores the required output for the positive integer N
 

Follow the steps below to solve the problem: 

  • Initialize an array, say dp[], such that dp[i]2 stores the value of (22 * X) % (109 + 7), where X is the binary representation of i.
  • Iterate over the range [3, N] using variable i and find all possible value of dp[i] using the tabulation method.
  • Finally, print the value of dp[N]2

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
#define M 1000000007
 
// Function to find the value
// of power(X, Y) in O(log Y)
long long power(long long X,
                long long Y)
{
    // Stores power(X, Y)
    long long res = 1;
 
    // Update X
    X = X % M;
 
    // Base Case
    if (X == 0)
        return 0;
 
    // Calculate power(X, Y)
    while (Y > 0) {
 
        // If Y is an odd number
        if (Y & 1) {
 
            // Update res
            res = (res * X) % M;
        }
 
        // Update Y
        Y = Y >> 1;
 
        // Update X
        X = (X * X) % M;
    }
 
    return res;
}
 
// Function to calculate
// (2^(2 * x)) % (10^9 + 7)
long long findValue(long long N)
{
 
    // dp[N] * dp[N]: Stores value
    // of (2^(2 * x)) % (10^9 + 7)
    long long dp[N + 1];
 
    // Base Case
    dp[1] = 2;
    dp[2] = 1024;
 
    // Iterate over the range [3, N]
    for (int i = 3; i <= N; i++) {
 
        // Stores rightmost
        // bit of i
        int y = (i & (-i));
 
        // Stores the value
        // of (i - y)
        int x = i - y;
 
        // If x is power
        // of 2
        if (x == 0) {
 
            // Update dp[i]
            dp[i]
                = power(dp[i / 2], 10);
        }
        else {
 
            // Update dp[i]
            dp[i]
                = (dp[x] * dp[y]) % M;
        }
    }
 
    return (dp[N] * dp[N]) % M;
}
 
// Driver Code
int main()
{
 
    long long n = 150;
    cout << findValue(n);
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG
{
  static final long M = 1000000007;
 
  // Function to find the value
  // of power(X, Y) in O(log Y)
  static long power(long X,
                    long Y)
  {
 
    // Stores power(X, Y)
    long res = 1;
 
    // Update X
    X = X % M;
 
    // Base Case
    if (X == 0)
      return 0;
 
    // Calculate power(X, Y)
    while (Y > 0)
    {
 
      // If Y is an odd number
      if (Y % 2 == 1)
      {
 
        // Update res
        res = (res * X) % M;
      }
 
      // Update Y
      Y = Y >> 1;
 
      // Update X
      X = (X * X) % M;
    }
 
    return res;
  }
 
  // Function to calculate
  // (2^(2 * x)) % (10^9 + 7)
  static long findValue(int N)
  {
 
    // dp[N] * dp[N]: Stores value
    // of (2^(2 * x)) % (10^9 + 7)
    long []dp = new long[N + 1];
 
    // Base Case
    dp[1] = 2;
    dp[2] = 1024;
 
    // Iterate over the range [3, N]
    for (int i = 3; i <= N; i++)
    {
 
      // Stores rightmost
      // bit of i
      int y = (i & (-i));
 
      // Stores the value
      // of (i - y)
      int x = i - y;
 
      // If x is power
      // of 2
      if (x == 0)
      {
 
        // Update dp[i]
        dp[i]
          = power(dp[i / 2], 10);
      }
      else
      {
 
        // Update dp[i]
        dp[i]
          = (dp[x] * dp[y]) % M;
      }
    }
    return (dp[N] * dp[N]) % M;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int n = 150;
    System.out.print(findValue(n));
  }
}
 
// This code is contributed by shikhasingrajput


Python3




# Python3 program to implement
# the above approach
M = 1000000007;
 
# Function to find the value
# of power(X, Y) in O(log Y)
def power(X, Y):
     
    # Stores power(X, Y)
    res = 1;
 
    # Update X
    X = X % M;
 
    # Base Case
    if (X == 0):
        return 0;
 
    # Calculate power(X, Y)
    while (Y > 0):
 
        # If Y is an odd number
        if (Y % 2 == 1):
             
            # Update res
            res = (res * X) % M;
 
        # Update Y
        Y = Y >> 1;
 
        # Update X
        X = (X * X) % M;
    return res;
 
# Function to calculate
# (2^(2 * x)) % (10^9 + 7)
def findValue(N):
 
    # dp[N] * dp[N]: Stores value
    # of (2^(2 * x)) % (10^9 + 7)
    dp = [0]*(N + 1);
 
    # Base Case
    dp[1] = 2;
    dp[2] = 1024;
 
    # Iterate over the range [3, N]
    for i in range(3, N + 1):
 
        # Stores rightmost
        # bit of i
        y = (i & (-i));
 
        # Stores the value
        # of (i - y)
        x = i - y;
 
        # If x is power
        # of 2
        if (x == 0):
 
            # Update dp[i]
            dp[i] = power(dp[i // 2], 10);
        else:
 
            # Update dp[i]
            dp[i] = (dp[x] * dp[y]) % M;
 
    return (dp[N] * dp[N]) % M;
 
# Driver Code
if __name__ == '__main__':
    n = 150;
    print(findValue(n));
 
# This code is contributed by 29AjayKumar


C#




// C# program to implement
// the above approach
using System;
class GFG
{
  static readonly long M = 1000000007;
 
  // Function to find the value
  // of power(X, Y) in O(log Y)
  static long power(long X,
                    long Y)
  {
 
    // Stores power(X, Y)
    long res = 1;
 
    // Update X
    X = X % M;
 
    // Base Case
    if (X == 0)
      return 0;
 
    // Calculate power(X, Y)
    while (Y > 0)
    {
 
      // If Y is an odd number
      if (Y % 2 == 1)
      {
 
        // Update res
        res = (res * X) % M;
      }
 
      // Update Y
      Y = Y >> 1;
 
      // Update X
      X = (X * X) % M;
    }
 
    return res;
  }
 
  // Function to calculate
  // (2^(2 * x)) % (10^9 + 7)
  static long findValue(int N)
  {
 
    // dp[N] * dp[N]: Stores value
    // of (2^(2 * x)) % (10^9 + 7)
    long []dp = new long[N + 1];
 
    // Base Case
    dp[1] = 2;
    dp[2] = 1024;
 
    // Iterate over the range [3, N]
    for (int i = 3; i <= N; i++)
    {
 
      // Stores rightmost
      // bit of i
      int y = (i & (-i));
 
      // Stores the value
      // of (i - y)
      int x = i - y;
 
      // If x is power
      // of 2
      if (x == 0)
      {
 
        // Update dp[i]
        dp[i]
          = power(dp[i / 2], 10);
      }
      else
      {
 
        // Update dp[i]
        dp[i]
          = (dp[x] * dp[y]) % M;
      }
    }
    return (dp[N] * dp[N]) % M;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int n = 150;
    Console.Write(findValue(n));
  }
}
 
// This code contributed by shikhasingrajput


Javascript




<script>
 
// Javascript code to implement the approach
var M = 1000000007n
 
// Function to calculate
// (2^(2 * x)) % (10^9 + 7)
function findValue(N)
{
 
    // dp[N] * dp[N]: Stores value
    // of (2^(2 * x)) % (10^9 + 7)
    var dp = Array(N + 1)
 
    // Base Case
    dp[1] = 2n
    dp[2] = 1024n
 
    // Iterate over the range [3, N]
    for (let i = 3 ; i <= N ; i++) {
 
        // Stores rightmost
        // bit of i
        var y = (i & (-i));
 
        // Stores the value
        // of (i - y)
        var x = i - y;
 
        // If x is power
        // of 2
        if (x == 0) {
 
            dp[i] = 1n
            // Update dp[i]
            for(let j = 0 ; j < 10 ; j++){
                dp[i] = BigInt((BigInt(dp[i/2])*dp[i]) % M)
            }
        }
        else {
 
            // Update dp[i]
            dp[i] = (dp[x] * dp[y]) % M;
        }
    }
 
    return (dp[N] * dp[N]) % M;
}
 
 
// Driver Code
var n = 150
console.log(Number(findValue(n)))
 
// This code is contributed by subhamgoyal2014.
</script>


Output: 

654430484

 

Time Complexity: O(N *log(N)) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments