Let’s see how to calculate the difference between the maximum and the minimum values of a given NumPy array along the second axis. Here, the Second axis means row-wise.
So firstly for finding the row-wise maximum and minimum elements in a NumPy array we are using numpy.amax() and numpy.amin() functions of NumPy library respectively. then After that we simply perform subtraction on it.
numpy.amax(): This function returns maximum of an array or maximum along axis(if mentioned).
Syntax: numpy.amax(arr, axis = None, out = None, keepdims = )
numpy.amin(): This function returns minimum of an array or minimum along axis(if mentioned).
Syntax: numpy.amin(arr, axis = None, out = None, keepdims = )
Now, Let’s see an example:
Example 1:
Python3
# import library import numpy as np # create a numpy 2d-array x = np.array([[ 100 , 20 , 305 ], [ 200 , 40 , 300 ]]) print ( "given array:\n" , x) # get maximum element row # wise from numpy array max1 = np.amax(x , 1 ) # get minimum element row # wise from numpy array min1 = np.amin(x, 1 ) # print the row-wise max # and min difference print ( "difference:\n" , max1 - min1) |
Output:
given array: [[100 20 305] [200 40 300]] difference: [285 260]
Example 2:
Python3
# import library import numpy as np # list x = [ 12 , 13 , 14 , 15 , 16 ] y = [ 17 , 18 , 19 , 20 , 21 ] # create a numpy 2d-array array = np.array([x, y]).reshape(( 2 , 5 )) print ( "original array:\n" , array) # find max and min elements # row-wise max1, min1 = np.amax(array, 1 ), np.amin(array, 1 ) # print the row-wise max # and min difference print ( "Difference:\n" , max1 - min1) |
Output:
original array: [[12 13 14 15 16] [17 18 19 20 21]] Difference: [4 4]