Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICalculate cost of visiting all array elements in increasing order

Calculate cost of visiting all array elements in increasing order

Given an array arr[] consisting of N integers, the task is to find the total cost of visiting all the array elements in ascending order, starting from 0, if the cost of a move from index i to the index j is the absolute difference between i and j.

Examples:

Input: arr[ ] = { 4, 3, 2, 5, 1 }
Output: 11
Explanation: 
Jump from index 0 to index 4. Cost = abs(4 – 0) = 4.
Jump from index 4 to index 2. Cost = abs(4 – 2) = 2.
Jump from index 2 to index1. Cost = abs(2 – 1) = 1.
Jump from index 1 to index 0. Cost = abs(1 – 0) = 1.
Jump from index 0 to index 3. Cost = abs(0 – 3) = 3.
Therefore, the total cost of visiting all array elements in ascending order = (4 + 2 + 1 + 1 + 3 = 11).

Input: arr[ ] = { 1, 2, 3 }
Output: 2

 

Approach: The idea is to use the concept of sorting of the vector of pairs. Follow the steps below to solve the problem:

  • Initialize a pair of vector<pair<int, int> >, say v, to store the pairs of elements and their respective positions.
  • Traverse the array arr[] and push the pair {arr[i], i} in the vector v.
  • Initialize two variables, say ans = 0 and last = 0, to store the total cost required and the index of the last visited element.
  • Sort the vector of pairs in ascending order.
  • Traverse the vector v and increment ans by abs(v[i].second – last). Update last as last = arr[i].second.
  • After completing the above steps, print the answer obtained as ans.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate total
// cost of visiting array
// elements in increasing order
int calculateDistance(int arr[], int N)
{
    // Stores the pair of element
    // and their positions
    vector<pair<int, int> > v;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++)
 
        // Push the pair {arr[i], i} in v
        v.push_back({ arr[i], i });
 
    // Sort the vector in ascending order.
    sort(v.begin(), v.end());
 
    // Stores the total cost
    int ans = 0;
 
    // Stores the index of last element visited
    int last = 0;
 
    // Traverse the vector v
    for (auto j : v) {
 
        // Increment ans
        ans += abs(j.second - last);
 
        // Assign
        last = j.second;
    }
 
    // Return ans
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 3, 2, 5, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << calculateDistance(arr, N);
}


Java




// java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Pair class
  static class Pair {
 
    int first;
    int second;
 
    Pair(int first, int second)
    {
      this.first = first;
      this.second = second;
    }
  }
 
  // Function to calculate total
  // cost of visiting array
  // elements in increasing order
  static int calculateDistance(int arr[], int N)
  {
    // Stores the pair of element
    // and their positions
    Pair v[] = new Pair[N];
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++)
 
      // Push the pair {arr[i], i} in v
      v[i] = new Pair(arr[i], i);
 
    // Sort the vector in ascending order.
    Arrays.sort(v, (p1, p2) -> {
      if (p1.first != p2.first)
        return p1.first - p2.first;
      return p1.second - p2.second;
    });
 
    // Stores the total cost
    int ans = 0;
 
    // Stores the index of last element visited
    int last = 0;
 
    // Traverse the vector v
    for (Pair j : v) {
 
      // Increment ans
      ans += Math.abs(j.second - last);
 
      // Assign
      last = j.second;
    }
 
    // Return ans
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int arr[] = { 4, 3, 2, 5, 1 };
    int N = arr.length;
 
    // Function call
    System.out.println(calculateDistance(arr, N));
  }
}
 
// This code is contributed by Kingash.


Python3




# Python3 implementation of the above approach
 
# Function to calculate total
# cost of visiting array
# elements in increasing order
def calculateDistance(arr, N):
 
    # Stores the pair of element
    # and their positions
    v = []
 
    # Traverse the array arr[]
    for i in range(N):
 
        # Push the pair {arr[i], i} in v
        v.append([arr[i], i])
 
    # Sort the vector in ascending order.
    v.sort()
 
    # Stores the total cost
    ans = 0
 
    # Stores the index of last element visited
    last = 0
 
    # Traverse the vector v
    for j in v:
 
        # Increment ans
        ans += abs(j[1] - last)
 
        # Assign
        last = j[1]
 
    # Return ans
    return ans
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [ 4, 3, 2, 5, 1 ]
    N = len(arr)
     
    print(calculateDistance(arr, N))
     
# This code is contributed by AnkThon


C#




using System;
using System.Linq;
 
namespace GFG
{
    class Program
    {
        // Pair class
        class Pair
        {
            public int first;
            public int second;
 
            public Pair(int first, int second)
            {
                this.first = first;
                this.second = second;
            }
        }
 
        // Function to calculate total
        // cost of visiting array
        // elements in increasing order
        static int CalculateDistance(int[] arr, int N)
        {
            // Stores the pair of element
            // and their positions
            Pair[] v = new Pair[N];
 
            // Traverse the array arr[]
            for (int i = 0; i < N; i++)
            {
                // Push the pair {arr[i], i} in v
                v[i] = new Pair(arr[i], i);
            }
 
            // Sort the vector in ascending order.
            Array.Sort(v, (p1, p2) =>
            {
                if (p1.first != p2.first)
                {
                    return p1.first - p2.first;
                }
                return p1.second - p2.second;
            });
 
            // Stores the total cost
            int ans = 0;
 
            // Stores the index of last element visited
            int last = 0;
 
            // Traverse the vector v
            foreach (Pair j in v)
            {
                // Increment ans
                ans += Math.Abs(j.second - last);
 
                // Assign
                last = j.second;
            }
 
            // Return ans
            return ans;
        }
 
        // Driver Code
        static void Main(string[] args)
        {
            int[] arr = { 4, 3, 2, 5, 1 };
            int N = arr.Length;
 
            // Function call
            Console.WriteLine(CalculateDistance(arr, N));
        }
    }
}
 
// This code is contributed by phasing17.


Javascript




<script>
// Javascript implementation of the above approach
 
// Function to calculate total
// cost of visiting array
// elements in increasing order
function calculateDistance(arr, N)
{
    // Stores the pair of element
    // and their positions
    var v = [];
     
    // Traverse the array arr[]
    for (var i = 0; i < N; i++)
    {
        // Push the pair {arr[i], i} in v
        v.push([ arr[i], i ]);
    }
 
    // Sort the vector in ascending order.
    v = v.sort();
 
    // Stores the total cost
    var ans = 0;
 
    // Stores the index of last element visited
    var last = 0;
 
    // Traverse the vector v
    for (var i = 0; i < N; i++)
    {
        // Increment ans
        ans += Math.abs(v[i][1] - last);
 
        // Assign
        last = v[i][1];
    }
 
    // Return ans
    return ans;
}
 
// Driver Code
var arr = [ 4, 3, 2, 5, 1 ];
var N = arr.length;
document.write(calculateDistance(arr, N));
 
// This code is contributed by Shubhamsingh10
</script>


Output: 

11

 

Time Complexity: O(N*log(N))
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments