Friday, October 10, 2025
HomeData Modelling & AIC++ Program to Sort the given matrix

C++ Program to Sort the given matrix

Given a n x n matrix. The problem is to sort the given matrix in strict order. Here strict order means that matrix is sorted in a way such that all elements in a row are sorted in increasing order and for row ‘i’, where 1 <= i <= n-1, first element of row ‘i’ is greater than or equal to the last element of row ‘i-1’.
Examples: 
 

Input : mat[][] = { {5, 4, 7},
                    {1, 3, 8},
                    {2, 9, 6} }
Output : 1 2 3
         4 5 6
         7 8 9

 

Approach: Create a temp[] array of size n^2. Starting with the first row one by one copy the elements of the given matrix into temp[]. Sort temp[]. Now one by one copy the elements of temp[] back to the given matrix.
 

C++




// C++ implementation to sort the given matrix
#include <bits/stdc++.h>
using namespace std;
  
#define SIZE 10
  
// function to sort the given matrix
void sortMat(int mat[SIZE][SIZE], int n)
{
    // temporary matrix of size n^2
    int temp[n * n];
    int k = 0;
  
    // copy the elements of matrix one by one
    // into temp[]
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            temp[k++] = mat[i][j];
  
    // sort temp[]
    sort(temp, temp + k);
      
    // copy the elements of temp[] one by one
    // in mat[][]
    k = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            mat[i][j] = temp[k++];
}
  
// function to print the given matrix
void printMat(int mat[SIZE][SIZE], int n)
{
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            cout << mat[i][j] << " ";
        cout << endl;
    }
}
  
// Driver program to test above
int main()
{
    int mat[SIZE][SIZE] = { { 5, 4, 7 },
                            { 1, 3, 8 },
                            { 2, 9, 6 } };
    int n = 3;
  
    cout << "Original Matrix:
";
    printMat(mat, n);
  
    sortMat(mat, n);
  
    cout << "
Matrix After Sorting:
";
    printMat(mat, n);
  
    return 0;
}


Output:  

Original Matrix:
5 4 7
1 3 8
2 9 6

Matrix After Sorting:
1 2 3
4 5 6
7 8 9

Time Complexity: O(n2log2n). 
Auxiliary Space: O(n2).
 

Please refer complete article on Sort the given matrix for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32349 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6792 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS