The Stooge sort is a recursive sorting algorithm. It is defined as below (for ascending order sorting).
Step 1 : If value at index 0 is greater than value at last index, swap them. Step 2: Recursively, a) Stooge sort the initial 2/3rd of the array. b) Stooge sort the last 2/3rd of the array. c) Stooge sort the initial 2/3rd again to confirm.
CPP
// C++ code to implement stooge sort #include <iostream> using namespace std; Â
// Function to implement stooge sort void stoogesort( int arr[], int l, int h) { Â if (l >= h) Â return ; Â
 // If first element is smaller than last,  // swap them  if (arr[l] > arr[h])  swap(arr[l], arr[h]); Â
 // If there are more than 2 elements in  // the array  if (h-l+1>2)  {   int t = (h-l+1)/3; Â
  // Recursively sort first 2/3 elements   stoogesort(arr, l, h-t); Â
  // Recursively sort last 2/3 elements   stoogesort(arr, l+t, h); Â
  // Recursively sort first 2/3 elements   // again to confirm   stoogesort(arr, l, h-t);  } } Â
// Driver Code int main() { Â int arr[] = {2, 4, 5, 3, 1}; Â int n = sizeof (arr)/ sizeof (arr[0]); Â
 // Calling Stooge Sort function to sort  // the array  stoogesort(arr, 0, n-1); Â
 // Display the sorted array  for ( int i=0; i<n; i++)   cout << arr[i] << " " ; Â
 return 0; } |
Output:
1 2 3 4 5
Time Complexity:
The running time complexity of stooge sort can be written as,
T(n) = 3T(3n/2) + O(1)
Solution of above recurrence is O(n(log3/log1.5)) = O(n2.709), hence it is slower than even bubble sort(n2).
Auxiliary Space: O(n)
Please refer complete article on Stooge Sort for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!