QuickSort on Doubly Linked List is discussed here. QuickSort on Singly linked list was given as an exercise. The important things about implementation are, it changes pointers rather swapping data and time complexity is same as the implementation for Doubly Linked List.
In partition(), we consider last element as pivot. We traverse through the current list and if a node has value greater than pivot, we move it after tail. If the node has smaller value, we keep it at its current position.
In QuickSortRecur(), we first call partition() which places pivot at correct position and returns pivot. After pivot is placed at correct position, we find tail node of left side (list before pivot) and recur for left list. Finally, we recur for right list.
C++
// C++ program for Quick Sort on // Singly Linked List #include <cstdio> #include <iostream> using namespace std; // A node of the singly // linked list struct Node { int data; struct Node* next; }; /* A utility function to insert a node at the beginning of linked list */ void push( struct Node** head_ref, int new_data) { // Allocate node struct Node* new_node = new Node; // Put in the data new_node->data = new_data; // Link the old list off the // new node new_node->next = (*head_ref); // Move the head to point to // the new node (*head_ref) = new_node; } // A utility function to print // linked list void printList( struct Node* node) { while (node != NULL) { printf ( "%d " , node->data); node = node->next; } printf ( "" ); } // Returns the last node of the list struct Node* getTail( struct Node* cur) { while (cur != NULL && cur->next != NULL) cur = cur->next; return cur; } // Partitions the list taking the // last element as the pivot struct Node* partition( struct Node* head, struct Node* end, struct Node** newHead, struct Node** newEnd) { struct Node* pivot = end; struct Node *prev = NULL, *cur = head, *tail = pivot; // During partition, both the head and // end of the list might change which // is updated in the newHead and newEnd // variables while (cur != pivot) { if (cur->data < pivot->data) { // First node that has a value // less than the pivot - becomes // the new head if ((*newHead) == NULL) (*newHead) = cur; prev = cur; cur = cur->next; } // If cur node is greater than pivot else { // Move cur node to next of tail, // and change tail if (prev) prev->next = cur->next; struct Node* tmp = cur->next; cur->next = NULL; tail->next = cur; tail = cur; cur = tmp; } } // If the pivot data is the smallest element // in the current list, pivot becomes the head if ((*newHead) == NULL) (*newHead) = pivot; // Update newEnd to the current last node (*newEnd) = tail; // Return the pivot node return pivot; } // here the sorting happens exclusive of the // end node struct Node* quickSortRecur( struct Node* head, struct Node* end) { // Base condition if (!head || head == end) return head; Node *newHead = NULL, *newEnd = NULL; // Partition the list, newHead and newEnd // will be updated by the partition function struct Node* pivot = partition(head, end, &newHead, &newEnd); // If pivot is the smallest element - no need // to recur for the left part. if (newHead != pivot) { // Set the node before the pivot node // as NULL struct Node* tmp = newHead; while (tmp->next != pivot) tmp = tmp->next; tmp->next = NULL; // Recur for the list before pivot newHead = quickSortRecur(newHead, tmp); // Change next of last node of the // left half to pivot tmp = getTail(newHead); tmp->next = pivot; } // Recur for the list after the // pivot element pivot->next = quickSortRecur(pivot->next, newEnd); return newHead; } // The main function for quick sort. // This is a wrapper over recursive // function quickSortRecur() void quickSort( struct Node** headRef) { (*headRef) = quickSortRecur(*headRef, getTail(*headRef)); return ; } // Driver code int main() { struct Node* a = NULL; push(&a, 5); push(&a, 20); push(&a, 4); push(&a, 3); push(&a, 30); cout << "Linked List before sorting " ; printList(a); quickSort(&a); cout << "Linked List after sorting " ; printList(a); return 0; } |
Output:
Linked List before sorting 30 3 4 20 5 Linked List after sorting 3 4 5 20 30
Time Complexity: O(N * log N), It takes O(N2) time in the worst case and O(N log N) in the average or best case.
Please refer complete article on QuickSort on Singly Linked List for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!