Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIC++ Program for Products of ranges in an array

C++ Program for Products of ranges in an array

Given an array A[] of size N. Solve Q queries. Find the product in the range [L, R] under modulo P ( P is Prime). 

Examples:  

Input : A[] = {1, 2, 3, 4, 5, 6} 
          L = 2, R = 5, P = 229
Output : 120

Input : A[] = {1, 2, 3, 4, 5, 6},
         L = 2, R = 5, P = 113
Output : 7 

Brute Force
For each of the queries, traverse each element in the range [L, R] and calculate the product under modulo P. This will answer each query in O(N).  

C++




// Product in range
// Queries in O(N)
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// Product in the given range.
int calculateProduct(int A[], int L,
                     int R, int P)
{
    // As our array is 0 based
    // as and L and R are given
    // as 1 based index.
    L = L - 1;
    R = R - 1;
 
    int ans = 1;
    for (int i = L; i <= R; i++)
    {
        ans = ans * A[i];
        ans = ans % P;
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int A[] = { 1, 2, 3, 4, 5, 6 };
    int P = 229;
    int L = 2, R = 5;
    cout << calculateProduct(A, L, R, P)
         << endl;
 
    L = 1, R = 3;
    cout << calculateProduct(A, L, R, P)
         << endl;
 
    return 0;
}


Output :  

120
6

 

Efficient Using Modular Multiplicative Inverse:
As P is prime, we can use Modular Multiplicative Inverse. Using dynamic programming, we can calculate a pre-product array under modulo P such that the value at index i contains the product in the range [0, i]. Similarly, we can calculate the pre-inverse product under modulo P. Now each query can be answered in O(1). 
The inverse product array contains the inverse product in the range [0, i] at index i. So, for the query [L, R], the answer will be Product[R]*InverseProduct[L-1]
Note: We can not calculate the answer as Product[R]/Product[L-1] because the product is calculated under modulo P. If we do not calculate the product under modulo P there is always a possibility of overflow.  

C++




// Product in range Queries in O(1)
#include <bits/stdc++.h>
using namespace std;
#define MAX 100
 
int pre_product[MAX];
int inverse_product[MAX];
 
// Returns modulo inverse of a
// with respect to m using
// extended Euclid Algorithm
// Assumption: a and m are
// coprimes, i.e., gcd(a, m) = 1
int modInverse(int a, int m)
{
    int m0 = m, t, q;
    int x0 = 0, x1 = 1;
 
    if (m == 1)
        return 0;
 
    while (a > 1)
    {
 
        // q is quotient
        q = a / m;
 
        t = m;
 
        // m is remainder now,
        // process same as
        // Euclid's algo
        m = a % m, a = t;
 
        t = x0;
 
        x0 = x1 - q * x0;
 
        x1 = t;
    }
 
    // Make x1 positive
    if (x1 < 0)
        x1 += m0;
 
    return x1;
}
 
// calculating pre_product
// array
void calculate_Pre_Product(int A[],
                           int N, int P)
{
    pre_product[0] = A[0];
 
    for (int i = 1; i < N; i++)
    {
        pre_product[i] = pre_product[i - 1] *
                                        A[i];
        pre_product[i] = pre_product[i] % P;
    }
}
 
// Calculating inverse_product
// array.
void calculate_inverse_product(int A[],
                               int N, int P)
{
    inverse_product[0] = modInverse(pre_product[0], P);
 
    for (int i = 1; i < N; i++)
        inverse_product[i] = modInverse(pre_product[i], P);
}
 
// Function to calculate
// Product in the given range.
int calculateProduct(int A[], int L,
                     int R, int P)
{
    // As our array is 0 based as
    // and L and R are given as 1
    // based index.
    L = L - 1;
    R = R - 1;
    int ans;
 
    if (L == 0)
        ans = pre_product[R];
    else
        ans = pre_product[R] *
              inverse_product[L - 1];
 
    return ans;
}
 
// Driver Code
int main()
{
    // Array
    int A[] = { 1, 2, 3, 4, 5, 6 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    // Prime P
    int P = 113;
 
    // Calculating PreProduct
    // and InverseProduct
    calculate_Pre_Product(A, N, P);
    calculate_inverse_product(A, N, P);
 
    // Range [L, R] in 1 base index
    int L = 2, R = 5;
    cout << calculateProduct(A, L, R, P)
         << endl;
 
    L = 1, R = 3;
    cout << calculateProduct(A, L, R, P)
         << endl;
    return 0;
}


Output :  

7
6

Please refer complete article on Products of ranges in an array for more details!
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments