Wednesday, January 1, 2025
Google search engine
HomeLanguagesBuild an GUI Application to Get Live Air Quality Information Using Python.

Build an GUI Application to Get Live Air Quality Information Using Python.

We are living in a modernization and industrialization era. Our life becomes more and more convenient. But the problem is Air Pollution arise with time. This Pollution makes us unhealthy, Air is a Lifeline for our life.

In this article, we are going to write python scripts to get live air quality information and bind it with GUI Application.

Modules Needed

  • bs4: Beautiful Soup(bs4) is a Python library for pulling data out of HTML and XML files. To install this type the command below in the terminal.
pip install bs4
  • requests: This allows you to send HTTP/1.1 requests very easily. To install this type the command below in the terminal.
pip install requests 

Approach:

  • Extract data form given URL. Copy the URL, after selecting the desired location.
  • Scrape the data with the help of requests and Beautiful Soup module.
  • Convert that data into HTML code.
  • Find the required details and filter them.

Implementation:

Step 1: Import all the modules required

Python3




# import module
import requests
from bs4 import BeautifulSoup


Step 2: Create a URL get function 

Python3




# link to extract html data
     
def getdata(url):
    r=requests.get(url)
    return r.text


Step 3: Now pass the URL into the getdata function and convert that data into HTML code. The URL used here is “https://weather.com/en-IN/forecast/air-quality/l/3dbed5c769584b3604a70d40a1a0a9f6ebc99c253d955b548f4978ca101eeca1”

Python3




htmldata = getdata(# write the URL )
soup = BeautifulSoup(htmldata, 'html.parser')
result =  soup.find_all(class_="DonutChart--innerValue--2rO41 AirQuality--pollutantDialText--3Y7DJ")
result


Output:

[<div class=”styles__primaryPollutantGraphNumber__2WgP9″ classname=”styles__primaryPollutantGraphNumber__2WgP9″>67</div>, 
<div class=”styles__primaryPollutantGraphNumber__2WgP9″ classname=”styles__primaryPollutantGraphNumber__2WgP9″>22</div>, 
<div class=”styles__primaryPollutantGraphNumber__2WgP9″ classname=”styles__primaryPollutantGraphNumber__2WgP9″>13</div>, 
<div class=”styles_N_primaryPollutantGraphNumber__2WgP9″ classname=”styles__primaryPollutantGraphNumber__2WgP9″>30</div>, 
<div class=”styles__primaryPollutantGraphNumber__2WgP9″ classname=”styles__primaryPollutantGraphNumber__2WgP9″>45</div>, 
<div class=”styles__primaryPollutantGraphNumber__2WgP9″ classname=”styles__primaryPollutantGraphNumber__2WgP9″>479</div>] 

Step 4: Filter your data and Check your Air Quality according to the given data :

Python3




# Traverse the air quality
res_quality = soup.find(class_="DonutChart--innerValue--2rO41 AirQuality--extendedDialText--2AsJa").text
 
# traverse the content
air_data = soup.find_all(class_="DonutChart--innerValue--2rO41 AirQuality--pollutantDialText--3Y7DJ")
air_data=[data.text for data in air_data]
print("Air Quality :", res_data)
print("O3 level :", air_data[0])
print("NO2 level :", air_data[1])
print("SO2 level :", air_data[2])
print("PM2.5 level :", air_data[3])
print("PM10 level :", air_data[4])
print("co level :", air_data[5])


Output:

Air Quality : 85
O3 level : 67
NO2 level : 22
SO2 level : 13
PM2.5 level : 30
PM10 level : 45
co level : 479

Step 5: Now Analyze the Air Quality with the given data:

Python3




res = int(res_data)
 
if res <= 50:
    remark = "Good"
    impact = "Minimal impact"
 
elif res <= 100 and res > 51:
    remark = "Satisfactory"
    impact = "Minor breathing discomfort to sensitive people"
 
elif res <= 200 and res >= 101:
    remark = "Moderate"
    impact = "Breathing discomfort to the people with lungs, asthma and heart diseases"
 
elif res <= 400 and res >= 201:
    remark = "Very Poor"
    impact = "Breathing discomfort to most people on prolonged exposure"
 
elif res <= 500 and res >= 401:
    remark = "Severe"
    impact = "Affects healthy people and seriously impacts those with existing diseases"
 
print(remark)
print(impact)


Output:

Satisfactory
Minor breathing discomfort to sensitive people

Application for the live Air Quality information with Tkinter: This Script implements the above Implementation into a GUI.

Python3




from tkinter import *
import requests
from bs4 import BeautifulSoup
 
 
# link for extract html data
 
def getdata(url):
    r = requests.get(url)
    return r.text
 
 
def airinfo():
    soup = BeautifulSoup(htmldata, 'html.parser')
    res_data = soup.find(class_="DonutChart--innerValue--2rO41 AirQuality--extendedDialText--2AsJa").text
    air_data = soup.find_all(class_="DonutChart--innerValue--2rO41 AirQuality--pollutantDialText--3Y7DJ")
    air_data=[data.text for data in air_data]
    
 
    ar.set(res_data)
    o3.set(air_data[0])
    no2.set(air_data[1])
    so2.set(air_data[2])
    pm.set(air_data[3])
    pml.set(air_data[4])
    co.set(air_data[5])
    res = int(res_data)
    if res <= 50:
        remark = "Good"
        impact = "Minimal impact"
    elif res <= 100 and res > 51:
        remark = "Satisfactory"
        impact = "Minor breathing discomfort to sensitive people"
    elif res <= 200 and res >= 101:
        remark = "Moderate"
        impact = "Breathing discomfort to the people with lungs, asthma and heart diseases"
    elif res <= 400 and res >= 201:
        remark = "Very Poor"
        impact = "Breathing discomfort to most people on prolonged exposure"
    elif res <= 500 and res >= 401:
        remark = "Severe"
        impact = "Affects healthy people and seriously impacts those with existing diseases"
    res_remark.set(remark)
    res_imp.set(impact)
 
 
# object of tkinter
# and background set to grey
master = Tk()
master.configure(bg='light grey')
 
# Variable Classes in tkinter
air_data = StringVar()
ar = StringVar()
o3 = StringVar()
no2 = StringVar()
so2 = StringVar()
pm = StringVar()
pml = StringVar()
co = StringVar()
res_remark = StringVar()
res_imp = StringVar()
 
 
# Creating label for each information
# name using widget Label
Label(master, text="Air Quality : ",
      bg="light grey").grid(row=0, sticky=W)
Label(master, text="O3 (μg/m3) :",
      bg="light grey").grid(row=1, sticky=W)
Label(master, text="NO2 (μg/m3) :",
      bg="light grey").grid(row=2, sticky=W)
Label(master, text="SO2 (μg/m3) :",
      bg="light grey").grid(row=3, sticky=W)
Label(master, text="PM2.5 (μg/m3) :",
      bg="light grey").grid(row=4, sticky=W)
Label(master, text="PM10 (μg/m3) :",
      bg="light grey").grid(row=5, sticky=W)
Label(master, text="CO (μg/m3) :",
      bg="light grey").grid(row=6, sticky=W)
 
Label(master, text="Remark :",
      bg="light grey").grid(row=7, sticky=W)
Label(master, text="Possible Health Impacts :",
      bg="light grey").grid(row=8, sticky=W)
 
 
# Creating label for class variable
# name using widget Entry
Label(master, text="", textvariable=ar,
      bg="light grey").grid(
    row=0, column=1, sticky=W)
Label(master, text="", textvariable=o3,
      bg="light grey").grid(
    row=1, column=1, sticky=W)
Label(master, text="", textvariable=no2,
      bg="light grey").grid(
    row=2, column=1, sticky=W)
Label(master, text="", textvariable=so2,
      bg="light grey").grid(
    row=3, column=1, sticky=W)
Label(master, text="", textvariable=pm,
      bg="light grey").grid(
    row=4, column=1, sticky=W)
Label(master, text="", textvariable=pml,
      bg="light grey").grid(
    row=5, column=1, sticky=W)
Label(master, text="", textvariable=co,
      bg="light grey").grid(
    row=6, column=1, sticky=W)
Label(master, text="", textvariable=res_remark,
      bg="light grey").grid(row=7, column=1, sticky=W)
Label(master, text="", textvariable=res_imp,
      bg="light grey").grid(row=8, column=1, sticky=W)
 
 
# creating a button using the widget
b = Button(master, text="Check",
           command=airinfo, bg="Blue")
b.grid(row=0, column=2, columnspan=2,
       rowspan=2, padx=5, pady=5,)
 
mainloop()


Output:

RELATED ARTICLES

Most Popular

Recent Comments