Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIBreak the number N in odd powers of 2

Break the number N in odd powers of 2

Given a positive integer N. The task is to print the array in decreasing order in which the numbers are odd powers of 2  and the sum of all the numbers in the array is  N and the size of the array should be minimum if it is not possible to form the array then print -1.

Examples:

 Input: 18
 Output: 8 8 2
 Explanation: Array with sum 18 and which consists 
minimum numbers with odd powers of 2 are [8 8 2] .
Since 8+8+2=19 and 21=2, 23=8 where 1, 3 are odd numbers.

 Input: 7 
Output: -1
Explanation: Since there is no array with sum equal to 7.

Approach: To solve the problem follow the below idea:

The idea is to create a  binary array of size (32) and check the set bit position.If  the bit position is odd, store the power of position else store power of (position-1).

Follow the below steps to solve the problem:

  • Create a binary array of max size 32 which will store the number’s binary.
  • If the number is odd then print -1.
  • If the number is even traverse the binary array from the reverse side and check if the bit is 1 and the position of the bit is odd then take its power of 2 and store it in the answer array.
  • If the bit is 1 and the position of the bit is even then take the 2 instances of 2^(position-1).
  • If the bit is 0 then continue traversing the binary array.
  • Print the answer array

Below is the Implementation of the above approach.

C++




// Code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate power of 2 .
int power(int x, int y)
{
    if (y == 0)
        return 1;
    else if (y % 2 == 0)
        return power(x, y / 2) * power(x, y / 2);
    else
        return x * power(x, y / 2) * power(x, y / 2);
}
 
// Function performing Calculation
vector<int> solve(int N)
{
    vector<int> binary(32);
    vector<int> answer;
 
    // Storing the binary of the number
    // N in the binary array.
    for (int i = 31; i >= 0; i--) {
 
        // Checking if the bit is set
        // or not
        if ((N & (1 << i)) != 0)
            binary[i] = 1;
    }
 
    // Storing power of 2 in the answer
    // array
    for (int i = 31; i >= 0; i--) {
 
        // If the bit is set and is at odd
        // position the store the power of
        // 2 of i.
        if (binary[i] == 1 && i & 1) {
            answer.push_back(power(2, i));
        }
        // If the bit is set and is at
        // even position
        // then store 2 numbers with
        // the power of 2 of i-1.
        else if (binary[i] == 1 && !(i & 1)) {
            answer.push_back(power(2, i - 1));
            answer.push_back(power(2, i - 1));
        }
        else
            continue;
    }
    return answer;
}
 
// Driver Function
int main()
{
    int N = 18;
 
    // Checking if the number is odd
    if (N & 1) {
        cout << -1 << endl;
        return 0;
    }
 
    // Function call
    vector<int> ans = solve(N);
 
    for (int x : ans)
        cout << x << " ";
    return 0;
}


Java




// Java Code for the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // Function to calculate power of 2 .
  public static int power(int x, int y)
  {
    if (y == 0)
      return 1;
    else if (y % 2 == 0)
      return power(x, y / 2) * power(x, y / 2);
    else
      return x * power(x, y / 2) * power(x, y / 2);
  }
 
  // Function performing Calculation
  public static ArrayList<Integer> solve(int N)
  {
    int binary[] = new int[32];
    ArrayList<Integer> answer
      = new ArrayList<Integer>();
 
    // Storing the binary of the number
    // N in the binary array.
    for (int i = 31; i >= 0; i--) {
 
      // Checking if the bit is set
      // or not
      if ((N & (1 << i)) != 0)
        binary[i] = 1;
    }
 
    // Storing power of 2 in the answer
    // array
    for (int i = 31; i >= 0; i--) {
 
      // If the bit is set and is at odd
      // position the store the power of
      // 2 of i.
      if (binary[i] == 1 && (i & 1) != 0) {
        answer.add(power(2, i));
      }
      // If the bit is set and is at
      // even position
      // then store 2 numbers with
      // the power of 2 of i-1.
      else if (binary[i] == 1 && (i & 1) == 0) {
        answer.add(power(2, i - 1));
        answer.add(power(2, i - 1));
      }
      else
        continue;
    }
    return answer;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 18;
 
    // Checking if the number is odd
    if ((N & 1) != 0) {
      System.out.println(-1);
      return;
    }
 
    // Function call
    ArrayList<Integer> ans = solve(N);
 
    for (Integer x : ans)
      System.out.print(x + " ");
  }
}
 
// This code is contributed by Rohit Pradhan


Python3




# Python code for the above approach
import math
 
# Function to calculate power of 2 .
def power( x,  y):
 
    if (y == 0):
        return 1;
    elif (y % 2 == 0):
        return power(x, math.floor(y / 2)) * power(x,  math.floor(y / 2));
    else:
        return x * power(x,  math.floor(y / 2)) * power(x,  math.floor(y / 2));
 
 
# Function performing Calculation
def solve( N):
 
    binary = [0]*(32);
    answer =[];
 
    # Storing the binary of the number
    # N in the binary array.
    for i in range(31,0,-1) :
 
        # Checking if the bit is set
        # or not
        if ((N & (1 << i)) != 0):
            binary[i] = 1;
     
 
    # Storing power of 2 in the answer
    # array
    for i in range(31,0,-1):
 
        # If the bit is set and is at odd
        # position the store the power of
        # 2 of i.
        if binary[i] == 1 and i & 1:
            answer.append(power(2, i));
         
        # If the bit is set and is at
        # even position
        # then store 2 numbers with
        # the power of 2 of i-1.
        elif binary[i] == 1 and (i & 1)==0:
            answer.append(power(2, i - 1));
            answer.append(power(2, i - 1));
        else:
            continue;
     
    return answer;
 
 
# Driver Function
 
N = 18;
 
    # Checking if the number is odd
if (N & 1):
    print(-1)
        
 
    # Function call
ans = solve(N);
 
for x in ans:
    print(x,end=" ");
     
   
# This code is contributed by Potta Lokesh


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to calculate power of 2 .
  public static int power(int x, int y)
  {
    if (y == 0)
      return 1;
    else if (y % 2 == 0)
      return power(x, y / 2) * power(x, y / 2);
    else
      return x * power(x, y / 2) * power(x, y / 2);
  }
 
  // Function performing Calculation
  public static List<int> solve(int N)
  {
    int[] binary = new int[32];
    List<int> answer
      = new List<int>();
 
    // Storing the binary of the number
    // N in the binary array.
    for (int i = 31; i >= 0; i--) {
 
      // Checking if the bit is set
      // or not
      if ((N & (1 << i)) != 0)
        binary[i] = 1;
    }
 
    // Storing power of 2 in the answer
    // array
    for (int i = 31; i >= 0; i--) {
 
      // If the bit is set and is at odd
      // position the store the power of
      // 2 of i.
      if (binary[i] == 1 && (i & 1) != 0) {
        answer.Add(power(2, i));
      }
      // If the bit is set and is at
      // even position
      // then store 2 numbers with
      // the power of 2 of i-1.
      else if (binary[i] == 1 && (i & 1) == 0) {
        answer.Add(power(2, i - 1));
        answer.Add(power(2, i - 1));
      }
      else
        continue;
    }
    return answer;
  }
 
// Driver Code
public static void Main()
{
    int N = 18;
 
    // Checking if the number is odd
    if ((N & 1) != 0) {
      Console.Write(-1);
      return;
    }
 
    // Function call
    List<int> ans = solve(N);
 
    foreach (int x in ans)
      Console.Write(x + " ");
}
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
    // Code for the above approach
 
    // Function to calculate power of 2 .
    const power = (x, y) => {
        if (y == 0)
            return 1;
        else if (y % 2 == 0)
            return power(x, parseInt(y / 2)) * power(x, parseInt(y / 2));
        else
            return x * power(x, parseInt(y / 2)) * power(x, parseInt(y / 2));
    }
 
    // Function performing Calculation
    const solve = (N) => {
        let binary = new Array(32).fill(0);
        let answer = [];
 
        // Storing the binary of the number
        // N in the binary array.
        for (let i = 31; i >= 0; i--) {
 
            // Checking if the bit is set
            // or not
            if ((N & (1 << i)) != 0)
                binary[i] = 1;
        }
 
        // Storing power of 2 in the answer
        // array
        for (let i = 31; i >= 0; i--) {
 
            // If the bit is set and is at odd
            // position the store the power of
            // 2 of i.
            if (binary[i] == 1 && i & 1) {
                answer.push(power(2, i));
            }
            // If the bit is set and is at
            // even position
            // then store 2 numbers with
            // the power of 2 of i-1.
            else if (binary[i] == 1 && !(i & 1)) {
                answer.push(power(2, i - 1));
                answer.push(power(2, i - 1));
            }
            else
                continue;
        }
        return answer;
    }
 
    // Driver Function
 
    let N = 18;
 
    // Checking if the number is odd
    if (N & 1) {
        document.write("-1<br/>");
 
    }
 
    // Function call
    let ans = solve(N);
 
    for (let x in ans)
        document.write(`${ans[x]} `);
 
    // This code is contributed by rakeshsahni
 
</script>


Output

8 8 2 

Time Complexity:  O(N*log N) where in the worst case N is 32.
Auxiliary Space: O(N) where N is 32.

Last Updated :
29 Sep, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments