Wednesday, December 25, 2024
Google search engine
HomeLanguagesBokeh – Multiple Plots

Bokeh – Multiple Plots

Prerequisites: Introduction to Bokeh in Python 

In this article, we will discuss how to plot multiple plots using Bokeh in Python. We are going to use the row() method of the bokeh.layouts module, it is used in show() method of bokeh.io library as an argument to depict multiple plots in using bokeh

Syntax:

show(row(fig1,fig2,fig3…..fign)) 

In which fig1, fig2, etc are objects of the class figure in bokeh.plotting module.

Approach

  • Import required modules
  • Assign coordinates and depict plots using figure class.
  • Use the figure objects as arguments in the row() method.
  • Use the show() method to depict the visualization returned from the row()method.

 

Example 1:

Different plots in the same page

Python3




# import modules
from bokeh.io import output_file, show
from bokeh.layouts import row
from bokeh.plotting import figure
 
# create a new plot
fig1 = figure(plot_width=500,
              plot_height=500)
fig1.line([1, 2, 3, 4, 5],
          [3, 1, 2, 6, 5],
          line_width=5)
 
# create another plot
x = y = list(range(10))
fig2 = figure(plot_width=500,
              plot_height=500)
fig2.circle(x, y, size=5)
 
# depict visualization
show(row(fig1, fig2))


Output:

Example 2:

Different plots on the same frame

Python3




# import modules
from bokeh.io import output_file, show
from bokeh.layouts import row
from bokeh.plotting import figure
import numpy as np
import random
 
 
# create a new plot
# instantiating the figure object
fig1 = figure(title="Plot 1")
 
# coordinates
x = [[[[0, 0, 1, 1]]],
     [[[2, 2, 4, 4], [2.5, 2.5, 3.5, 3.5]]],
     [[[2, 0, 4]]]]
y = [[[[2.5, 0.5, 0.5, 2.5]]],
     [[[1, 0, 0, 1], [0.75, 0.25, 0.25, 0.75]]],
     [[[2, 0, 0]]]]
 
# color values of the polygons
color = ["red", "purple", "yellow"]
 
# fill alpha values of the polygons
fill_alpha = 0.5
 
# plotting the graph
fig1.multi_polygons(x, y,
                    color=color,
                    fill_alpha=fill_alpha)
 
 
# create another plot
# coordinates
x = np.arange(5)
y = x**2
z = x*3
p = np.linspace(1, 20, 7)
q = np.linspace(1, 10, 7)
r = np.linspace(1, 30, 5)
a = np.arange(31)
 
# creating an empty figure with specific plot
# width and height
fig2 = figure(title="Plot 2")
 
# plotting the points in the form of
# circular glyphs
fig2.circle(x, y, color="red", size=20)
 
# plotting the points in the form of
# square glyphs
fig2.square(x, z, color="blue", size=15, alpha=0.5)
 
# plotting the points in the form of
# hex glyphs
fig2.hex(y, z, color="green", size=10, alpha=0.7)
 
# drawing a line between the plotted points
fig2.line(x, y, color="green", line_width=4)
 
# plotting the points in the form of
# inverted triangle glyph
fig2.inverted_triangle(p, q, color="yellow", size=20, alpha=0.4)
 
# plotting the points in the form of
# diamond glyphs
fig2.diamond(x, r, color="purple", size=16, alpha=0.8)
 
# plotting the points in the form of
# cross glyphs
fig2.cross(a, a, size=14)
 
 
# create a third plot
# generating the points to be plotted
x = []
y = []
for i in range(100):
    x.append(i)
for i in range(100):
    y.append(1 + random.random())
 
# parameters of line 1
line_color = "red"
line_dash = "solid"
legend_label = "Line 1"
 
fig3 = figure(title="Plot 3")
 
# plotting the line
fig3.line(x, y,
          line_color=line_color,
          line_dash=line_dash,
          legend_label=legend_label)
 
# plotting line 2
# generating the points to be plotted
x = []
y = []
for i in range(100):
    x.append(i)
for i in range(100):
    y.append(random.random())
 
# parameters of line 2
line_color = "green"
line_dash = "dotdash"
line_dash_offset = 1
legend_label = "Line 2"
 
# plotting the line
fig3.line(x, y,
          line_color=line_color,
          line_dash=line_dash,
          line_dash_offset=line_dash_offset,
          legend_label=legend_label)
 
# depict visualization
show(row(fig1, fig2, fig3))


Output:

Example 3: 

Multiple plots in a row

Python3




# import modules
from bokeh.io import output_file, show
from bokeh.layouts import row
from bokeh.plotting import figure
 
# assign coordinates
x = y = list(range(10))
xs = [[[[0, 0, 1, 1]]]]
ys = [[[[3, 2, 2, 3]]]]
 
# create a new plot
fig1 = figure(title="Plot 1", plot_width=250,
              plot_height=250)
fig1.line(x, y, line_width=25, color="lime")
 
# create another plot
fig2 = figure(title="Plot 2", plot_width=250,
              plot_height=250)
fig2.circle(x, y, size=25, color="lime")
 
# create another plot
fig3 = figure(title="Plot 3", plot_width=250,
              plot_height=250)
fig3.square(x, y, size=25, color="lime")
 
# create another plot
fig4 = figure(title="Plot 4", plot_width=250,
              plot_height=250)
fig4.triangle(x, y, size=25, color="lime")
 
# create another plot
fig5 = figure(title="Plot 5", plot_width=250,
              plot_height=250)
fig5.multi_polygons(xs, ys, color="lime")
 
# create another plot
fig6 = figure(title="Plot 6", plot_width=250,
              plot_height=250)
fig6.line(x, y, line_dash="dotted", color="lime")
 
# depict visualization
show(row(fig1, fig2,
         fig3, fig4,
         fig5, fig6))


Output:

RELATED ARTICLES

Most Popular

Recent Comments