Tuesday, November 19, 2024
Google search engine
HomeLanguagesKMeans Clustering and PCA on Wine Dataset

KMeans Clustering and PCA on Wine Dataset

K-Means Clustering: K Means Clustering is an unsupervised learning algorithm that tries to cluster data based on their similarity. Unsupervised learning means that there is no outcome to be predicted, and the algorithm just tries to find patterns in the data. In k means clustering, we specify the number of clusters we want the data to be grouped into. The algorithm randomly assigns each observation to a set and finds the centroid of each set. Then, the algorithm iterates through two steps: Reassign data points to the cluster whose centroid is closest. Calculate the new centroid of each cluster. These two steps are repeated until the within-cluster variation cannot be reduced further. The within-cluster deviation is calculated as the sum of the Euclidean distance between the data points and their respective cluster centroids.

In this article, we will cluster the wine datasets and visualize them after dimensionality reductions with PCA.

Importing libraries needed for dataset analysis

We will first import some useful Python libraries like Pandas, Seaborn, Matplotlib and SKlearn for performing complex computational tasks. 

Python3




import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_wine
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA


 Importing Dataset:

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines

Python




df = load_wine(as_frame=True)
df = df.frame
df.head()


Output :

  alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od315_of_diluted_wines proline target
0 14.23 1.71 2.43 15.6 127.0 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065.0 0
1 13.20 1.78 2.14 11.2 100.0 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050.0 0
2 13.16 2.36 2.67 18.6 101.0 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185.0 0
3 14.37 1.95 2.50 16.8 113.0 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480.0 0
4 13.24 2.59 2.87 21.0 118.0 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735.0 0

Because We are doing here the unsupervised learning. So we remove the target Customer_Segment column from our datasets.

Python3




df.drop('target', axis =1, inplace=True)
 
# Check the data informations
df.info()


Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 13 columns):
 #   Column                        Non-Null Count  Dtype  
---  ------                        --------------  -----  
 0   alcohol                       178 non-null    float64
 1   malic_acid                    178 non-null    float64
 2   ash                           178 non-null    float64
 3   alcalinity_of_ash             178 non-null    float64
 4   magnesium                     178 non-null    float64
 5   total_phenols                 178 non-null    float64
 6   flavanoids                    178 non-null    float64
 7   nonflavanoid_phenols          178 non-null    float64
 8   proanthocyanins               178 non-null    float64
 9   color_intensity               178 non-null    float64
 10  hue                           178 non-null    float64
 11  od280/od315_of_diluted_wines  178 non-null    float64
 12  proline                       178 non-null    float64
dtypes: float64(13)
memory usage: 18.2 KB

Scaling the Data:

Data is scaled using StandardScaler except for the target column(Customer_Segment), whose values must remain unchanged.

Python




scaler =StandardScaler()
 
features =scaler.fit(df)
features =features.transform(df)
 
# Convert to pandas Dataframe
scaled_df =pd.DataFrame(features,columns=df.columns)
# Print the scaled data
scaled_df.head(2)


Output:

  alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od315_of_diluted_wines proline
0 1.518613 -0.562250 0.232053 -1.169593 1.913905 0.808997 1.034819 -0.659563 1.224884 0.251717 0.362177 1.847920 1.013009
1 0.246290 -0.499413 -0.827996 -2.490847 0.018145 0.568648 0.733629 -0.820719 -0.544721 -0.293321 0.406051 1.113449 0.965242

In general, K-Means requires unlabeled data in order to run. 

So, taking data without labels to perform K-means clustering.

Python




X=scaled_df.values


Elbow Method

The elbow Method is used to determine the number of clusters

Python3




wcss = {}
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
    wcss[i] = kmeans.inertia_
     
plt.plot(wcss.keys(), wcss.values(), 'gs-')
plt.xlabel("Values of 'k'")
plt.ylabel('WCSS')
plt.show()


Output:

Elbow Curve -GeeksforLazyroar

Elbow Curve

As we can see from the above graph that there is turning like an elbow at k=3. So, we can say that the right number of cluster for the given datasets is 3.

Implementing K-Means:

Let’s perform the K-Means clustering for n_clusters=3.

Python




kmeans=KMeans(n_clusters=3)
kmeans.fit(X)


Output :

KMeans(n_clusters=3)

For each cluster, there are values of cluster centers according to the number of columns present in the data.

Python




kmeans.cluster_centers_


Output :

array([[ 0.83523208, -0.30380968,  0.36470604, -0.61019129,  0.5775868 ,
         0.88523736,  0.97781956, -0.56208965,  0.58028658,  0.17106348,
         0.47398365,  0.77924711,  1.12518529],
       [-0.92607185, -0.39404154, -0.49451676,  0.17060184, -0.49171185,
        -0.07598265,  0.02081257, -0.03353357,  0.0582655 , -0.90191402,
         0.46180361,  0.27076419, -0.75384618],
       [ 0.16490746,  0.87154706,  0.18689833,  0.52436746, -0.07547277,
        -0.97933029, -1.21524764,  0.72606354, -0.77970639,  0.94153874,
        -1.16478865, -1.29241163, -0.40708796]])

labels_ Index of the cluster each sample belongs to.

Python




kmeans.labels_


Output :

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2], dtype=int32)

Apply Dimensionality Reduction Technique PCA

Principal Component Analysis is a technique that transforms high-dimensions data into lower-dimension while retaining as much information as possible.

  • It is used to interpret and visualize data. 
  • The number of variables decreases, which simplifies further analysis.

We can then view the PCA components_, i.e. the principal axes in the feature space, which represent the directions of maximum variance in the dataset. These components are sorted by explained_variance_.

Minimize the dataset from 15 features to 2 features using principal component analysis (PCA).

Python




pca=PCA(n_components=2)
 
reduced_X=pd.DataFrame(data=pca.fit_transform(X),columns=['PCA1','PCA2'])
 
#Reduced Features
reduced_X.head()


Output :

  PCA1 PCA2
0 3.316751 -1.443463
1 2.209465 0.333393
2 2.516740 -1.031151
3 3.757066 -2.756372
4 1.008908 -0.869831

Reducing centers:

Reducing the cluster centers using PCA.

Python




centers=pca.transform(kmeans.cluster_centers_)
 
# reduced centers
centers


Output :

array([[ 2.2761936 , -0.93205403],
       [-0.03695661,  1.77223945],
       [-2.72003575, -1.12565126]])

Represent the cluster plot based on PCA1 and PCA2. Differentiate clusters by passing a color parameter as c=kmeans.labels_

Python




plt.figure(figsize=(7,5))
 
# Scatter plot
plt.scatter(reduced_X['PCA1'],reduced_X['PCA2'],c=kmeans.labels_)
plt.scatter(centers[:,0],centers[:,1],marker='x',s=100,c='red')
plt.xlabel('PCA1')
plt.ylabel('PCA2')
plt.title('Wine Cluster')
plt.tight_layout()


Output :

Wine Cluster

Wine Cluster

Effect of PCA1 & PCA2 on Clusters:

If we really want to reduce the size of the dataset, the best number of principal components is much less than the number of variables in the original dataset.

Python




pca.components_


Output :

array([[ 0.1443294 , -0.24518758, -0.00205106, -0.23932041,  0.14199204,
         0.39466085,  0.4229343 , -0.2985331 ,  0.31342949, -0.0886167 ,
         0.29671456,  0.37616741,  0.28675223],
       [-0.48365155, -0.22493093, -0.31606881,  0.0105905 , -0.299634  ,
        -0.06503951,  0.00335981, -0.02877949, -0.03930172, -0.52999567,
         0.27923515,  0.16449619, -0.36490283]])

Represent the effect Features on PCA components.

Python




component_df=pd.DataFrame(pca.components_,index=['PCA1',"PCA2"],columns=df.columns)
# Heat map
sns.heatmap(component_df)
plt.show()


Output :

Effect of each features on PCA 1 and PCA2 -GeeksforLazyroar

Effect of each features on PCA 1 and PCA2

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments