Friday, January 10, 2025
Google search engine
HomeData Modelling & AIBitwise XOR of elements having odd frequency

Bitwise XOR of elements having odd frequency

Given an array arr[] of N elements, the task is to find the XOR of the elements which appear an odd number of times in the array.
Examples: 

Input: arr[] = {1, 2, 1, 3, 3, 4, 2, 3, 1} 
Output:
Elements with odd frequencies are 1, 3 and 4. 
And (1 ^ 3 ^ 4) = 6

Input: arr[] = {2, 2, 7, 8, 7} 
Output:
 

Naive Approach: Traverse the array and store the frequencies of all the elements in a unordered_map. Now, calculate the XOR of elements having odd frequency using the map created in the previous step.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the xor of
// elements having odd frequency
int xorOdd(int arr[], int n)
{
    // To store the frequency
    // of all the elements
    unordered_map<int, int> m;
 
    // Update the map with the
    // frequency of the elements
    for (int i = 0; i < n; i++)
        m[arr[i]]++;
 
    // To store the XOR of the elements
    // appearing odd number of
    // times in the array
    int xorArr = 0;
 
    // Traverse the map using an iterator
    for (auto it = m.begin(); it != m.end(); it++) {
 
        // Check for odd frequency
        // and update the xor
        if ((it->second) & 1) {
            xorArr ^= it->first;
        }
    }
 
    return xorArr;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 1, 3, 3, 4, 2, 3, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << xorOdd(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
// Function to return the xor of
// elements having odd frequency
static int xorOdd(int arr[], int n)
{
    // To store the frequency
    // of all the elements
    HashMap<Integer,
            Integer> mp = new HashMap<Integer,
                                      Integer>();
 
    // Update the map with the
    // frequency of the elements
    for (int i = 0 ; i < n; i++)
    {
        if(mp.containsKey(arr[i]))
        {
            mp.put(arr[i], mp.get(arr[i]) + 1);
        }
        else
        {
            mp.put(arr[i], 1);
        }
    }
     
    // To store the XOR of the elements
    // appearing odd number of
    // times in the array
    int xorArr = 0;
 
    // Traverse the map using an iterator
    for (Map.Entry<Integer,
                   Integer> it : mp.entrySet())
    {
        // Check for odd frequency
        // and update the xor
        if (((it.getValue()) % 2) ==1)
        {
            xorArr ^= it.getKey();
        }
    }
    return xorArr;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 1, 3, 3, 4, 2, 3, 1 };
    int n = arr.length;
 
    System.out.println(xorOdd(arr, n));
}
}
 
// This code contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to return the xor of
# elements having odd frequency
def xorOdd(arr, n) :
 
    # To store the frequency
    # of all the elements
    m = dict.fromkeys(arr, 0);
 
    # Update the map with the
    # frequency of the elements
    for i in range(n) :
        m[arr[i]] += 1;
 
    # To store the XOR of the elements
    # appearing odd number of
    # times in the array
    xorArr = 0;
 
    # Traverse the map using an iterator
    for key,value in m.items() :
 
        # Check for odd frequency
        # and update the xor
        if (value & 1) :
            xorArr ^= key;
 
    return xorArr;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 1, 3, 3, 4, 2, 3, 1 ];
    n = len(arr);
 
    print(xorOdd(arr, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;                
     
class GFG
{
     
// Function to return the xor of
// elements having odd frequency
static int xorOdd(int []arr, int n)
{
    // To store the frequency
    // of all the elements
    Dictionary<int,
               int> mp = new Dictionary<int,
                                        int>();
 
    // Update the map with the
    // frequency of the elements
    for (int i = 0 ; i < n; i++)
    {
        if(mp.ContainsKey(arr[i]))
        {
            mp[arr[i]] = mp[arr[i]] + 1;
        }
        else
        {
            mp.Add(arr[i], 1);
        }
    }
     
    // To store the XOR of the elements
    // appearing odd number of
    // times in the array
    int xorArr = 0;
 
    // Traverse the map using an iterator
    foreach(KeyValuePair<int, int> it in mp)
    {
        // Check for odd frequency
        // and update the xor
        if (((it.Value) % 2) == 1)
        {
            xorArr ^= it.Key;
        }
    }
    return xorArr;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 1, 3, 3, 4, 2, 3, 1 };
    int n = arr.Length;
 
    Console.WriteLine(xorOdd(arr, n));
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the xor of
// elements having odd frequency
function xorOdd(arr, n)
{
     
    // To store the frequency
    // of all the elements
    let mp = new Map();
  
    // Update the map with the
    // frequency of the elements
    for(let i = 0 ; i < n; i++)
    {
        if (mp.has(arr[i]))
        {
            mp.set(arr[i], mp.get(arr[i]) + 1);
        }
        else
        {
            mp.set(arr[i], 1);
        }
    }
      
    // To store the XOR of the elements
    // appearing odd number of
    // times in the array
    let xorArr = 0;
  
    // Traverse the map using an iterator
    for(let [key, value] of mp.entries())
    {
         
        // Check for odd frequency
        // and update the xor
        if (((value) % 2) == 1)
        {
            xorArr ^= key;
        }
    }
    return xorArr;
}
 
// Driver code
let arr = [ 1, 2, 1, 3, 3, 4, 2, 3, 1 ];
let n = arr.length;
 
document.write(xorOdd(arr, n));
 
// This code is contributed by rag2127
 
</script>


Output: 

6

 

This solution takes O(n) time and O(n) space. 

Efficient Approach: 
This approach uses two important properties of XOR – a ^ a = 0 and 0 ^ a = a. Take XOR of all the elements in the array. The result will be the XOR of numbers that appears an odd number of times since elements appearing even number of times eventually cancel out each other. 

C++




// C++ program to implement
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
int xorOdd(int arr[], int n) {
    // initialise result as 0
    int result = 0;
 
    // take XOR of all elements
    for (int i = 0; i < n; ++i) {
        result ^= arr[i];
    }
     
     // return result
    return result;
}
 
// Driver code
int main() {
    int arr[] = { 1, 2, 1, 3, 3, 4, 2, 3, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
   
    cout << xorOdd(arr, n);
   
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG{
 
static int xorOdd(int arr[], int n)
{
     
    // Initialise result as 0
    int result = 0;
 
    // Take XOR of all elements
    for(int i = 0; i < n; ++i)
    {
        result ^= arr[i];
    }
     
    // Return result
    return result;
}
 
// Driver code
public static void main (String[] args)
{
    int arr[] = { 1, 2, 1, 3, 3,
                  4, 2, 3, 1 };
    int n = arr.length;
 
    System.out.println(xorOdd(arr, n));
}
}
 
// This code is contributed by math_lover


Python3




# Python3 program to implement
# the above approach
def xorOdd(arr, n):
   
    # Initialise result as 0
    result = 0
 
    # Take XOR of all elements
    for i in range (n):
        result ^= arr[i]
     
     # Return result
    return result
 
# Driver code
if __name__ == "__main__":
   
    arr = [1, 2, 1, 3, 3,
           4, 2, 3, 1]
    n = len(arr) 
    print( xorOdd(arr, n))
  
# This code is contributed by Chitranayal


C#




// C# program to implement
// the above approach
using System;
 
class GFG {
 
    static int xorOdd(int[] arr, int n)
    {
 
        // Initialise result as 0
        int result = 0;
 
        // Take XOR of all elements
        for (int i = 0; i < n; ++i) {
            result ^= arr[i];
        }
 
        // Return result
        return result;
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 1, 2, 1, 3, 3, 4, 2, 3, 1 };
        int n = arr.Length;
 
        Console.Write(xorOdd(arr, n));
    }
}
 
// This code is contributed by rishavmahato348.


Javascript




<script>
// Javascript program to implement
// the above approach
 
function xorOdd(arr, n) {
    // initialise result as 0
    let result = 0;
 
    // take XOR of all elements
    for (let i = 0; i < n; ++i) {
        result ^= arr[i];
    }
     
     // return result
    return result;
}
 
// Driver code
    let arr = [ 1, 2, 1, 3, 3, 4, 2, 3, 1 ];
    let n = arr.length;
   
    document.write(xorOdd(arr, n));
 
</script>


Output: 

6

 

This solution takes O(n) time and O(1) space. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments