Wednesday, January 21, 2026
HomeLanguagesBinning in Data Mining

Binning in Data Mining

Data binning, bucketing is a data pre-processing method used to minimize the effects of small observation errors. The original data values are divided into small intervals known as bins and then they are replaced by a general value calculated for that bin. This has a smoothing effect on the input data and may also reduce the chances of overfitting in the case of small datasets
There are 2 methods of dividing data into bins:  

  1. Equal Frequency Binning: bins have an equal frequency.
  2. Equal Width Binning : bins have equal width with a range of each bin are defined as [min + w], [min + 2w] …. [min + nw] where w = (max – min) / (no of bins).

Equal frequency: 

Input:[5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215] 

Output:
[5, 10, 11, 13]
[15, 35, 50, 55]
[72, 92, 204, 215]

Equal Width:  

Input: [5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215]

Output:
[5, 10, 11, 13, 15, 35, 50, 55, 72]
[92]
[204, 215]

Code : Implementation of Binning Technique: 

Python




# equal frequency
def equifreq(arr1, m):    
    a = len(arr1)
    n = int(a / m)
    for i in range(0, m):
        arr = []
        for j in range(i * n, (i + 1) * n):
            if j >= a:
                break
            arr = arr + [arr1[j]]
        print(arr)
  
# equal width
def equiwidth(arr1, m):
    a = len(arr1)
    w = int((max(arr1) - min(arr1)) / m)
    min1 = min(arr1)
    arr = []
    for i in range(0, m + 1):
        arr = arr + [min1 + w * i]
    arri=[]
      
    for i in range(0, m):
        temp = []
        for j in arr1:
            if j >= arr[i] and j <= arr[i+1]:
                temp += [j]
        arri += [temp]
    print(arri) 
  
# data to be binned
data = [5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215]
  
# no of bins
m = 3 
  
print("equal frequency binning")
equifreq(data, m)
  
print("\n\nequal width binning")
equiwidth(data, 3)


Output : 

equal frequency binning
[5, 10, 11, 13]
[15, 35, 50, 55]
[72, 92, 204, 215]


equal width binning
[[5, 10, 11, 13, 15, 35, 50, 55, 72], [92], [204, 215]] 
RELATED ARTICLES

1 COMMENT

Most Popular

Dominic
32475 POSTS0 COMMENTS
Milvus
119 POSTS0 COMMENTS
Nango Kala
6847 POSTS0 COMMENTS
Nicole Veronica
11977 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12064 POSTS0 COMMENTS
Shaida Kate Naidoo
6986 POSTS0 COMMENTS
Ted Musemwa
7220 POSTS0 COMMENTS
Thapelo Manthata
6933 POSTS0 COMMENTS
Umr Jansen
6912 POSTS0 COMMENTS