Monday, January 13, 2025
Google search engine
HomeData Modelling & AIBinary Array Range Queries to find the minimum distance between two Zeros

Binary Array Range Queries to find the minimum distance between two Zeros

Prerequisite: Segment Trees
Given a binary array arr[] consisting of only 0’s and 1’s and a 2D array Q[][] consisting of K queries, the task is to find the minimum distance between two 0’s in the range [L, R] of the array for every query {L, R}.

Examples:

Input: arr[] = {1, 0, 0, 1}, Q[][] = {{0, 2}} 
Output:
Explanation: 
Clearly, in the range [0, 2], the first 0 lies at index 1 and last at index 2. 
Minimum distance = 2 – 1 = 1.

Input: arr[] = {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0}, Q[][] = {{3, 9}, {10, 13}} 
Output: 2 3 
Explanation: 
In the range [3, 9], the minimum distance between 0’s is 2 (Index 4 and 6). 
In the range [10, 13], the minimum distance between 0’s is 3 (Index 10 and 13). 

Approach: The idea is to use a segment tree to solve this problem: 

  1. Every node in the segment tree will have the index of leftmost 0 as well as rightmost 0 and an integer containing the minimum distance between 0’s in the subarray {L, R}.
  2. Let min be the minimum distance between two zeroes. Then, the value of min can be found after forming the segment tree as: 
    min = minimum(value of min in the left node, the value of min in the right node, and the difference between the leftmost index of 0 in right node and rightmost index of 0 in left node).
  3. After computing and storing the minimum distance for every node, all the queries can be answered in logarithmic time.

Below is the implementation of the above approach:

C++




// C++ program to find the minimum
// distance between two elements
// with value 0 within a subarray (l, r)
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure for each node
// in the segment tree
struct node {
    int l0, r0;
    int min0;
} seg[100001];
 
// A utility function for
// merging two nodes
node task(node l, node r)
{
    node x;
 
    x.l0 = (l.l0 != -1) ? l.l0 : r.l0;
 
    x.r0 = (r.r0 != -1) ? r.r0 : l.r0;
 
    x.min0 = min(l.min0, r.min0);
 
    // If both the nodes are valid
    if (l.r0 != -1 && r.l0 != -1)
 
        // Computing the minimum distance to store
        // in the segment tree
        x.min0 = min(x.min0, r.l0 - l.r0);
 
    return x;
}
 
// A recursive function that constructs
// Segment Tree for given string
void build(int qs, int qe, int ind, int arr[])
{
    // If start is equal to end then
    // insert the array element
    if (qs == qe) {
 
        if (arr[qs] == 0) {
            seg[ind].l0 = seg[ind].r0 = qs;
            seg[ind].min0 = INT_MAX;
        }
 
        else {
            seg[ind].l0 = seg[ind].r0 = -1;
            seg[ind].min0 = INT_MAX;
        }
 
        return;
    }
 
    int mid = (qs + qe) >> 1;
 
    // Build the segment tree
    // for range qs to mid
    build(qs, mid, ind << 1, arr);
 
    // Build the segment tree
    // for range mid+1 to qe
    build(mid + 1, qe, ind << 1 | 1, arr);
 
    // Merge the two child nodes
    // to obtain the parent node
    seg[ind] = task(seg[ind << 1],
                    seg[ind << 1 | 1]);
}
 
// Query in a range qs to qe
node query(int qs, int qe, int ns, int ne, int ind)
{
    node x;
    x.l0 = x.r0 = -1;
    x.min0 = INT_MAX;
 
    // If the range lies in this segment
    if (qs <= ns && qe >= ne)
        return seg[ind];
 
    // If the range is out of the bounds
    // of this segment
    if (ne < qs || ns > qe || ns > ne)
        return x;
 
    // Else query for the right and left
    // child node of this subtree
    // and merge them
    int mid = (ns + ne) >> 1;
 
    node l = query(qs, qe, ns, mid, ind << 1);
    node r = query(qs, qe, mid + 1, ne, ind << 1 | 1);
 
    x = task(l, r);
    return x;
}
 
// Driver code
int main()
{
 
    int arr[] = { 1, 1, 0, 1, 0, 1,
                0, 1, 0, 1, 0, 1, 1, 0 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Build the segment tree
    build(0, n - 1, 1, arr);
 
    // Queries
    int Q[][2] = { { 3, 9 }, { 10, 13 } };
 
    for (int i = 0; i < 2; i++) {
 
// Finding the answer for every query
// and printing it
        node ans = query(Q[i][0], Q[i][1],
                        0, n - 1, 1);
 
        cout << ans.min0 << endl;
    }
 
    return 0;
}


Java




// Java program to find the minimum
// distance between two elements
// with value 0 within a subarray (l, r)
public class GFG{
 
// Structure for each Node
// in the segment tree
static class Node
{
    int l0, r0;
    int min0;
};
 
static Node[] seg = new Node[100001];
 
// A utility function for
// merging two Nodes
static Node task(Node l, Node r)
{
    Node x = new Node();
 
    x.l0 = (l.l0 != -1) ? l.l0 : r.l0;
 
    x.r0 = (r.r0 != -1) ? r.r0 : l.r0;
 
    x.min0 = Math.min(l.min0, r.min0);
 
    // If both the Nodes are valid
    if (l.r0 != -1 && r.l0 != -1)
 
        // Computing the minimum distance to store
        // in the segment tree
        x.min0 = Math.min(x.min0, r.l0 - l.r0);
 
    return x;
}
 
// A recursive function that constructs
// Segment Tree for given string
static void build(int qs, int qe,
                  int ind, int arr[])
{
     
    // If start is equal to end then
    // insert the array element
    if (qs == qe)
    {
        if (arr[qs] == 0)
        {
            seg[ind].l0 = seg[ind].r0 = qs;
            seg[ind].min0 = Integer.MAX_VALUE;
        }
 
        else
        {
            seg[ind].l0 = seg[ind].r0 = -1;
            seg[ind].min0 = Integer.MAX_VALUE;
        }
        return;
    }
 
    int mid = (qs + qe) >> 1;
 
    // Build the segment tree
    // for range qs to mid
    build(qs, mid, ind << 1, arr);
 
    // Build the segment tree
    // for range mid+1 to qe
    build(mid + 1, qe, ind << 1 | 1, arr);
 
    // Merge the two child Nodes
    // to obtain the parent Node
    seg[ind] = task(seg[ind << 1],
                    seg[ind << 1 | 1]);
}
 
// Query in a range qs to qe
static Node query(int qs, int qe, int ns,
                  int ne, int ind)
{
    Node x = new Node();
    x.l0 = x.r0 = -1;
    x.min0 = Integer.MAX_VALUE;
 
    // If the range lies in this segment
    if (qs <= ns && qe >= ne)
        return seg[ind];
 
    // If the range is out of the bounds
    // of this segment
    if (ne < qs || ns > qe || ns > ne)
        return x;
 
    // Else query for the right and left
    // child Node of this subtree
    // and merge them
    int mid = (ns + ne) >> 1;
 
    Node l = query(qs, qe, ns, mid,
                          ind << 1);
    Node r = query(qs, qe, mid + 1,
                  ne, ind << 1 | 1);
 
    x = task(l, r);
    return x;
}
 
// Driver code
public static void main(String[] args)
{
    for(int i = 0; i < 100001; i++)
    {
        seg[i] = new Node();
    }
 
    int arr[] = { 1, 1, 0, 1, 0, 1, 0,
                  1, 0, 1, 0, 1, 1, 0 };
 
    int n = arr.length;
 
    // Build the segment tree
    build(0, n - 1, 1, arr);
 
    // Queries
    int[][] Q = { { 3, 9 }, { 10, 13 } };
 
    for(int i = 0; i < 2; i++)
    {
         
        // Finding the answer for every query
        // and printing it
        Node ans = query(Q[i][0], Q[i][1],
                         0, n - 1, 1);
 
        System.out.println(ans.min0);
    }
}
}
 
// This code is contributed by sanjeev2552


Python3




# Python3 program to find the minimum
# distance between two elements with
# value 0 within a subarray (l, r)
import sys
  
# Structure for each node
# in the segment tree
class node():
     
    def __init__(self):
         
        self.l0 = 0
        self.r0 = 0
        min0 = 0
         
seg = [node() for i in range(100001)]
  
# A utility function for
# merging two nodes
def task(l, r):
     
    x = node()
       
    x.l0 = l.l0 if (l.l0 != -1) else r.l0
    x.r0 = r.r0 if (r.r0 != -1else l.r0
  
    x.min0 = min(l.min0, r.min0)
  
    # If both the nodes are valid
    if (l.r0 != -1 and r.l0 != -1):
  
        # Computing the minimum distance to
        # store in the segment tree
        x.min0 = min(x.min0, r.l0 - l.r0)
  
    return x
  
# A recursive function that constructs
# Segment Tree for given string
def build(qs, qe, ind, arr):
  
    # If start is equal to end then
    # insert the array element
    if (qs == qe):
  
        if (arr[qs] == 0):
            seg[ind].l0 = seg[ind].r0 = qs
            seg[ind].min0 = sys.maxsize
             
        else:
            seg[ind].l0 = seg[ind].r0 = -1
            seg[ind].min0 = sys.maxsize
  
        return
  
    mid = (qs + qe) >> 1
     
    # Build the segment tree
    # for range qs to mid
    build(qs, mid, ind << 1, arr)
  
    # Build the segment tree
    # for range mid+1 to qe
    build(mid + 1, qe, ind << 1 | 1, arr)
  
    # Merge the two child nodes
    # to obtain the parent node
    seg[ind] = task(seg[ind << 1],
                    seg[ind << 1 | 1])
                     
# Query in a range qs to qe
def query(qs, qe, ns, ne, ind):
  
    x = node()
    x.l0 = x.r0 = -1
    x.min0 = sys.maxsize
  
    # If the range lies in this segment
    if (qs <= ns and qe >= ne):
        return seg[ind]
  
    # If the range is out of the bounds
    # of this segment
    if (ne < qs or ns > qe or ns > ne):
        return x
  
    # Else query for the right and left
    # child node of this subtree
    # and merge them
    mid = (ns + ne) >> 1
  
    l = query(qs, qe, ns, mid, ind << 1)
    r = query(qs, qe, mid + 1, ne, ind << 1 | 1)
  
    x = task(l, r)
     
    return x
 
# Driver code 
if __name__=="__main__":
     
    arr = [ 1, 1, 0, 1, 0, 1, 0,
            1, 0, 1, 0, 1, 1, 0 ]
  
    n = len(arr)
  
    # Build the segment tree
    build(0, n - 1, 1, arr)
     
    # Queries
    Q = [ [ 3, 9 ], [ 10, 13 ] ]
     
    for i in range(2):
  
        # Finding the answer for every query
        # and printing it
        ans = query(Q[i][0], Q[i][1], 0,
                    n - 1, 1)
         
        print(ans.min0)
 
# This code is contributed by rutvik_56


C#




// C# program to find the minimum
// distance between two elements
// with value 0 within a subarray (l, r)
using System;
// Structure for each node
// in the segment tree
class Node
{
public int l0, r0;
public int min0;
}
class GFG
{
static Node[] seg = new Node[100001];
 
// A utility function for
// merging two nodes
static Node task(Node l, Node r)
{
    Node x = new Node();
 
    x.l0 = (l.l0 != -1) ? l.l0 : r.l0;
 
    x.r0 = (r.r0 != -1) ? r.r0 : l.r0;
 
    x.min0 = Math.Min(l.min0, r.min0);
 // If both the nodes are valid
    if (l.r0 != -1 && r.l0 != -1)
    // Computing the minimum distance to store
        // in the segment tree
        x.min0 = Math.Min(x.min0, r.l0 - l.r0);
 
    return x;
}
// A recursive function that constructs
// Segment Tree for given string
static void build(int qs, int qe, int ind, int[] arr)
{
    // If start is equal to end then
    // insert the array element
    if (qs == qe)
    {
        if (arr[qs] == 0)
        {
            seg[ind].l0 = seg[ind].r0 = qs;
            seg[ind].min0 = int.MaxValue;
        }
        else
        {
            seg[ind].l0 = seg[ind].r0 = -1;
            seg[ind].min0 = int.MaxValue;
        }
        return;
    }
 
    int mid = (qs + qe) >> 1;
  // Build the segment tree
    // for range qs to mid
    build(qs, mid, ind << 1, arr);
  // Build the segment tree
    // for range mid+1 to qe
    build(mid + 1, qe, ind << 1 | 1, arr);
  // Merge the two child nodes
    // to obtain the parent node
    seg[ind] = task(seg[ind << 1], seg[ind << 1 | 1]);
}
// Query in a range qs to qe
static Node query(int qs, int qe, int ns, int ne, int ind)
{
    Node x = new Node();
    x.l0 = x.r0 = -1;
    x.min0 = int.MaxValue;
  // If the range lies in this segment
    if (qs <= ns && qe >= ne)
        return seg[ind];
 
    if (ne < qs || ns > qe || ns > ne)
        return x;
    // Else query for the right and left
    // child node of this subtree
    // and merge them
    int mid = (ns + ne) >> 1;
 
    Node l = query(qs, qe, ns, mid, ind << 1);
    Node r = query(qs, qe, mid + 1, ne, ind << 1 | 1);
 
    x = task(l, r);
    return x;
}
 
// Driver code
public static void Main(string[] args)
{
    for (int i = 0; i < 100001; i++)
    {
        seg[i] = new Node();
    }
 
    int[] arr = new int[] { 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 };
    int n = arr.Length;
 // Build the segment tree
    build(0, n - 1, 1, arr);
  // Queries
    int[][] Q = new int[][]  { new int[] { 3, 9 },  new int[]{ 10, 13 } };
// Finding the answer for every query
// and printing it
    for (int i = 0; i < 2; i++)
    {
        Node ans = query(Q[i][0], Q[i][1], 0, n - 1, 1);
        Console.WriteLine(ans.min0);
    }
}
}


Javascript




// JavaScript equivalent of the above code
 
// Structure for each node
// in the segment tree
class Node {
  constructor() {
    this.l0 = 0;
    this.r0 = 0;
    this.min0 = 0;
  }
}
 
let seg = [];
// Creating an array of nodes
for(let i = 0; i < 100001; i++) {
  seg.push(new Node());
}
 
// A utility function for
// merging two nodes
function task(l, r) {
  let x = new Node();
  x.l0 = (l.l0 != -1) ? l.l0 : r.l0;
  x.r0 = (r.r0 != -1) ? r.r0 : l.r0;
  x.min0 = Math.min(l.min0, r.min0);
  // If both the nodes are valid
  if (l.r0 != -1 && r.l0 != -1) {
    // Computing the minimum distance to
    // store in the segment tree
    x.min0 = Math.min(x.min0, r.l0 - l.r0);
  }
  return x;
}
 
// A recursive function that constructs
// Segment Tree for given string
function build(qs, qe, ind, arr) {
  // If start is equal to end then
  // insert the array element
  if (qs == qe) {
    if (arr[qs] == 0) {
      seg[ind].l0 = seg[ind].r0 = qs;
      seg[ind].min0 = Number.MAX_SAFE_INTEGER;
    } else {
      seg[ind].l0 = seg[ind].r0 = -1;
      seg[ind].min0 = Number.MAX_SAFE_INTEGER;
    }
    return;
  }
  let mid = Math.floor((qs + qe) / 2);
  // Build the segment tree
  // for range qs to mid
  build(qs, mid, ind * 2, arr);
  // Build the segment tree
  // for range mid+1 to qe
  build(mid + 1, qe, ind * 2 + 1, arr);
  // Merge the two child nodes
  // to obtain the parent node
  seg[ind] = task(seg[ind * 2], seg[ind * 2 + 1]);
}
 
// Query in a range qs to qe
function query(qs, qe, ns, ne, ind) {
  let x = new Node();
  x.l0 = x.r0 = -1;
  x.min0 = Number.MAX_SAFE_INTEGER;
  // If the range lies in this segment
  if (qs <= ns && qe >= ne) return seg[ind];
  // If the range is out of the bounds
  // of this segment
  if (ne < qs || ns > qe || ns > ne) return x;
  // Else query for the right and left
  // child node of this subtree
  // and merge them
  let mid = Math.floor((ns + ne) / 2);
  let l = query(qs, qe, ns, mid, ind * 2);
  let r = query(qs, qe, mid + 1, ne, ind * 2 + 1);
  x = task(l, r);
  return x;
}
 
// Driver code 
 
let arr = [ 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 ];
let n = arr.length;
 
// Build the segment tree
build(0, n - 1, 1, arr);
 
// Queries
let Q = [ [ 3, 9 ], [ 10, 13 ] ];
 
for(let i = 0; i < 2; i++) {
  // Finding the answer for every query
  // and printing it
  let ans = query(Q[i][0], Q[i][1], 0, n - 1, 1);
  console.log(ans.min0);
}


Output:

2
3

Time Complexity: O(N * logN) 
Auxiliary Space: O(N* logN) 

Related Topic: Segment Tree

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments