Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIBertrand’s Postulate

Bertrand’s Postulate

In mathematics, Bertrand’s Postulate states that there is a prime number in the range n    to 2n - 2    where n is a natural number and n >= 4. It has been proved by Chebyshev and later by Ramanujan. A lenient form of the postulate states that there exists a prime in range n to 2n for any n(n >= 2).
 

There exists a prime p for n < p < 2*n - 2    for all n <= 4. The less stricter form states that there exists a prime p. For n < p < 2*n    for all n <= 2. 
Examples: 
For n = 4 and 2*n – 2 = 6, 
5 is a prime number in the range (4, 6).
For n = 5 and 2*n – 2 = 8, 
7 is a prime number in the range (5, 8).
For n = 6 and 2*n – 2 = 10, 
7 is a prime number in the range (6, 10).
For n = 7 and 2*n – 2 = 12, 
11 is a prime number in the range (7, 12).
For n = 8 and 2*n – 2 = 14, 
11 is a prime number in the range (8, 14). 

Examples : 

Input: n = 4
Output: Prime numbers in range (4, 6) are 5

Input: n = 5
Output: Prime numbers in range (5, 8) are 7

Input: n = 6
Output: Prime numbers in range (6, 10) are 7

 

C++




// CPP code to verify Bertrand's postulate
// for a given n.
#include <bits/stdc++.h>
using namespace std;
 
bool isprime(int n)
{
    // check whether a number is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0) // i is a factor of n
            return false;
    return true;
}
 
int main()
{
    int n = 10;
 
    // Checking Bertrand's postulate
    // Presence of prime numbers in range (n, 2n - 2)
    cout << "Prime numbers in range (" << n << ", "
         << 2 * n - 2 << ")\n";
    for (int i = n + 1; i < 2 * n - 2; i++)
        if (isprime(i))
            cout << i << "\n";
 
    return 0;
}


Java




// Java code to verify Bertrand's
// postulate for a given n.
import java.io.*;
 
class GFG
{
static boolean isprime(int n)
{
    // check whether a number
    // is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0) // i is a factor of n
            return false;
    return true;
}
 
    // Driver Code
    public static void main (String[] args)
    {
        int n = 10;
 
        // Checking Bertrand's postulate
        // Presence of prime numbers in
        // range (n, 2n - 2)
        System.out.println("Prime numbers in range (" +
                          n + ", "+ (2 * n - 2) + ")");
        for (int i = n + 1; i < 2 * n - 2; i++)
            if (isprime(i))
                System.out.println(i);
    }
}
 
// This code is contributed
// by shiv_bhakt


Python3




# PHP code to verify
# Bertrand's postulate
# for a given n.
def isprime(n):
     
    # check whether a number
    # is prime or not
    i = 2;
    while(i * i <= n):
        if (n % i == 0):
             
            # i is a factor of n
            return False;
        i = i + 1;
    return True;
 
# Driver Code
n = 10;
 
# Checking Bertrand's
# postulate Presence
# of prime numbers in
# range (n, 2n - 2)
print("Prime numbers in range (" , n ,
               ", ", 2 * n - 2 , ")");
i = n + 1;
while(i < (2 * n - 2)):
    if (isprime(i)):
        print(i);
    i = i + 1;
 
# This code is contributed by mits


C#




// C# code to verify Bertrand's
// postulate for a given n.
using System;
 
class GFG
{
static bool isprime(int n)
{
    // check whether a number
    // is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0) // i is a factor of n
            return false;
    return true;
}
 
// Driver Code
public static void Main ()
{
    int n = 10;
 
    // Checking Bertrand's postulate
    // Presence of prime numbers in
    // range (n, 2n - 2)
    Console.WriteLine("Prime numbers in range (" +
                     n + ", "+ (2 * n - 2) + ")");
    for (int i = n + 1; i < 2 * n - 2; i++)
        if (isprime(i))
            Console.WriteLine(i);
}
}
 
// This code is contributed
// by shiv_bhakt


PHP




<?php
// PHP code to verify Bertrand's
// postulate for a given n.
function isprime($n)
{
    // check whether a number
    // is prime or not
    for ($i = 2; $i * $i <= $n; $i++)
        if ($n % $i == 0) // i is a factor of n
            return false;
    return true;
}
 
// Driver Code
$n = 10;
 
// Checking Bertrand's postulate
// Presence of prime numbers in
// range (n, 2n - 2)
echo "Prime numbers in range (" , $n ,
             ", ", 2 * $n - 2 , ")\n";
for ($i = $n + 1; $i < 2 * $n - 2; $i++)
    if (isprime($i))
        echo $i , "\n";
 
// This code is contributed by ajit
?>


Javascript




<script>
 
    // Javascript code to verify Bertrand's
    // postulate for a given n.
     
    function isprime(n)
    {
        // check whether a number
        // is prime or not
        for (let i = 2; i * i <= n; i++)
            if (n % i == 0) // i is a factor of n
                return false;
        return true;
    }
     
    let n = 10;
   
    // Checking Bertrand's postulate
    // Presence of prime numbers in
    // range (n, 2n - 2)
    document.write(
    "Prime numbers in range (" + n + ", "+ (2 * n - 2) + ")" +
    "</br>"
    );
    for (let i = n + 1; i < 2 * n - 2; i++)
        if (isprime(i))
            document.write(i + "</br>");
 
         
</script>


Output : 

Prime numbers in range (10, 18)
11
13
17

 

Time Complexity: O(n*sqrt(n))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments