Bellman-Ford Algorithm:
The Bellman-Ford algorithm is a single-source shortest-path algorithm that works by iteratively relaxing edges in the graph until the shortest path to all vertices is found. It is especially useful for graphs with negative edge weights, as it can detect negative cycles and return a suitable error message.
Floyd-Warshall Algorithm:
The Floyd-Warshall algorithm is a multi-source shortest path algorithm that works by computing the shortest path between all pairs of vertices in the graph using dynamic programming. It is known for its simplicity and ease of implementation, making it a popular choice in many applications.
In this article, we will compare and contrast the Bellman-Ford algorithm and the Floyd-Warshall algorithm, examining their respective strengths and weaknesses, time and space complexity, and implementation details.
As we know that both of these algorithms work on Directed Graphs, Let us take a common example to understand the approaches of these algorithms.
Bellman-ford’s Algorithm
The Bellman-Ford algorithm can be implemented as follows:
- Initialize the distance from the source vertex (i.e. 0) to all other vertices in the graph to infinity, except for the distance from the source vertex to itself, which is 0.
- For each vertex in the graph, repeat the following process |V|-1 times (where |V| is the number of vertices in the graph):
- For each edge (u, v) in the graph, where u is the source vertex and v is the destination vertex, relax the edge by updating the distance to v if the distance to u plus the weight of (u, v) is less than the current distance to v.
- After the (|V|-1)th iteration, check for the presence of negative cycles by iterating over all the edges in the graph and checking if any of them can still be relaxed. If so, then a negative cycle is present, and the algorithm returns a suitable error message.
Here’s how the algorithm would work:
- Initialize the distance from A to all other vertices to infinity, except for the distance from A to itself, which is 0: dist[0] = 0.
- Repeat the process of relaxing edges 5 times (|V|-1 = 6-1 = 5) to relax all edges in the graph.
- Check for negative cycles by iterating over all edges in the graph. In this case, there are no negative cycles, as all edges have been relaxed in the previous step.
Hence our distance from source 0 to each node will look like this,
Implementation of Bellman-Ford’s Algorithm:
C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std; class Solution { public : void shortest_paths(vector<vector< int > >& grid, int V) { vector< int > dist(V, 1e9); // Taking 0 as our source dist[0] = 0; // Relaxing V-1 times for ( int i = 0; i < V; i++) { // For each value in the given // vector of [u, v, wt] for ( auto it : grid) { int u = it[0]; int v = it[1]; int wt = it[2]; // If there exist a better // distance and pvs dist // of u should not // be infinite if (dist[u] != 1e9 && dist[u] + wt < dist[v]) { dist[v] = dist[u] + wt; } } } // If negetive cycle exist then // it will still reduce for // Vth traversal for ( auto it : grid) { int u = it[0]; int v = it[1]; int wt = it[2]; if (dist[u] != 1e9 && dist[u] + wt < dist[v]) { cout << "ERROR ALERT, Negetive Cycle exists" << endl; } } cout << "The shortest distances from " << endl; for ( int i = 0; i < V; i++) { cout << " 0 to " << i << " ---> " << dist[i] << endl; } } }; // Driver code int main() { int V = 6; vector<vector< int > > grid = { { 0, 1, 2 }, { 0, 3, 5 }, { 0, 4, 3 }, { 1, 0, 3 }, { 1, 5, 6 }, { 1, 2, 2 }, { 1, 3, 2 }, { 2, 5, 1 }, { 2, 3, 1 }, { 3, 4, 1 }, { 4, 3, 2 } }; Solution s1; // Function call s1.shortest_paths(grid, V); return 0; } |
Java
import java.util.Arrays; import java.util.List; import java.util.ArrayList; class Solution { public void shortestPaths(List<List<Integer>> grid, int V) { int [] dist = new int [V]; Arrays.fill(dist, Integer.MAX_VALUE); // Taking 0 as our source dist[ 0 ] = 0 ; // Relaxing V-1 times for ( int i = 0 ; i < V; i++) { // For each value in the given // list of [u, v, wt] for (List<Integer> it : grid) { int u = it.get( 0 ); int v = it.get( 1 ); int wt = it.get( 2 ); // If there exists a better // distance and the previous distance // of u should not be infinite if (dist[u] != Integer.MAX_VALUE && dist[u] + wt < dist[v]) { dist[v] = dist[u] + wt; } } } // If a negative cycle exists, it will still reduce for // Vth traversal for (List<Integer> it : grid) { int u = it.get( 0 ); int v = it.get( 1 ); int wt = it.get( 2 ); if (dist[u] != Integer.MAX_VALUE && dist[u] + wt < dist[v]) { System.out.println( "ERROR ALERT, Negative Cycle exists" ); } } System.out.println( "The shortest distances from:" ); for ( int i = 0 ; i < V; i++) { System.out.println( "0 to " + i + " ---> " + dist[i]); } } } public class Main { public static void main(String[] args) { int V = 6 ; List<List<Integer>> grid = new ArrayList<>(); grid.add(Arrays.asList( 0 , 1 , 2 )); grid.add(Arrays.asList( 0 , 3 , 5 )); grid.add(Arrays.asList( 0 , 4 , 3 )); grid.add(Arrays.asList( 1 , 0 , 3 )); grid.add(Arrays.asList( 1 , 5 , 6 )); grid.add(Arrays.asList( 1 , 2 , 2 )); grid.add(Arrays.asList( 1 , 3 , 2 )); grid.add(Arrays.asList( 2 , 5 , 1 )); grid.add(Arrays.asList( 2 , 3 , 1 )); grid.add(Arrays.asList( 3 , 4 , 1 )); grid.add(Arrays.asList( 4 , 3 , 2 )); Solution s1 = new Solution(); // Function call s1.shortestPaths(grid, V); } } |
Python
# python code for the above approach: class Solution: def shortest_paths( self , grid, V): dist = [ float ( 'inf' )] * V # Taking 0 as our source dist[ 0 ] = 0 # Relaxing V-1 times for i in range (V): # For each value in the given # list of [u, v, wt] for u, v, wt in grid: # If there exists a better # distance and previous dist # of u should not be infinite if dist[u] ! = float ( 'inf' ) and dist[u] + wt < dist[v]: dist[v] = dist[u] + wt # If negative cycle exists then # it will still reduce for # Vth traversal for u, v, wt in grid: if dist[u] ! = float ( 'inf' ) and dist[u] + wt < dist[v]: print ( "ERROR ALERT, Negative Cycle exists" ) print ( "The shortest distances from " ) for i in range (V): print ( " 0 to" , i, "--->" , dist[i]) # Driver code if __name__ = = "__main__" : V = 6 grid = [[ 0 , 1 , 2 ], [ 0 , 3 , 5 ], [ 0 , 4 , 3 ], [ 1 , 0 , 3 ], [ 1 , 5 , 6 ], [ 1 , 2 , 2 ], [ 1 , 3 , 2 ], [ 2 , 5 , 1 ], [ 2 , 3 , 1 ], [ 3 , 4 , 1 ], [ 4 , 3 , 2 ]] s1 = Solution() # Function call s1.shortest_paths(grid, V) |
Javascript
class Solution { shortestPaths(grid, V) { const dist = new Array(V).fill(1e9); // Taking 0 as our source dist[0] = 0; // Relaxing V-1 times for (let i = 0; i < V; i++) { // For each value in the given vector of [u, v, wt] for (const it of grid) { const u = it[0]; const v = it[1]; const wt = it[2]; // If there exists a better distance and the previous distance // of u should not be infinite if (dist[u] !== 1e9 && dist[u] + wt < dist[v]) { dist[v] = dist[u] + wt; } } } // If a negative cycle exists, it will still reduce for Vth traversal for (const it of grid) { const u = it[0]; const v = it[1]; const wt = it[2]; if (dist[u] !== 1e9 && dist[u] + wt < dist[v]) { console.log( "ERROR ALERT, Negative Cycle exists" ); } } console.log( "The shortest distances from:" ); for (let i = 0; i < V; i++) { console.log(`0 to ${i} ---> ${dist[i]}`); } } } // Driver code const V = 6; const grid = [ [0, 1, 2], [0, 3, 5], [0, 4, 3], [1, 0, 3], [1, 5, 6], [1, 2, 2], [1, 3, 2], [2, 5, 1], [2, 3, 1], [3, 4, 1], [4, 3, 2] ]; const s1 = new Solution(); // Function call s1.shortestPaths(grid, V); |
The shortest distances from 0 to 0 ---> 0 0 to 1 ---> 2 0 to 2 ---> 4 0 to 3 ---> 4 0 to 4 ---> 3 0 to 5 ---> 5
Time complexity: O(|V||E|)
Auxiliary space: O(|V|)
Floyd-Warshall’s Algorithm
The Floyd-Warshall algorithm is used to find the shortest path between all pairs of nodes in a weighted graph. It works by maintaining a distance matrix where each entry (i, j) represents the shortest distance from node i to node j. The algorithm starts by initializing the distance matrix with the weights of the edges in the graph. Then, it iteratively updates the distance matrix by considering all possible intermediate nodes and choosing the path with the minimum total weight.
Implementation of Floyd-Warshall’s Algorithm:
C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std; class Solution { public : void shortest_dist(vector<vector< int > >& matrix) { int N = matrix.size(); // changing value of -1 // to infinite for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { if (matrix[i][j] == -1) { matrix[i][j] = 1e9; } // The distance of node to // itself will be 0. if (i == j) { matrix[i][j] = 0; } } } // Assign the better distance // (if exist) in the matrix // one by one making each node // as our intermediate node for ( int via = 0; via < N; via++) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { matrix[i][j] = min( matrix[i][j], matrix[i][via] + matrix[via][j]); } } } // Replacing infinity to -1, // after the work is done for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { if (matrix[i][j] == 1e9) { matrix[i][j] = -1; } } } } }; // Driver code int main() { vector<vector< int > > grid = { { 0, 1, 2 }, { 0, 3, 5 }, { 0, 4, 3 }, { 1, 0, 3 }, { 1, 5, 6 }, { 1, 2, 2 }, { 1, 3, 2 }, { 2, 5, 1 }, { 2, 3, 1 }, { 3, 4, 1 }, { 4, 3, 2 } }; int V = 6; vector<vector< int > > matrix(V, vector< int >(V, -1)); // creating matrix representation for ( auto it : grid) { int u = it[0]; int v = it[1]; int wt = it[2]; matrix[u][v] = wt; } Solution obj; // Function call obj.shortest_dist(matrix); for ( auto row : matrix) { for ( auto it : row) { if (it == 1e9) { it = -1; } cout << it << "\t" ; } cout << endl; } return 0; } |
Python3
# Python code for the above approach: class Solution: def shortest_dist( self , matrix): N = len (matrix) # changing value of -1 # to infinite for i in range (N): for j in range (N): if matrix[i][j] = = - 1 : matrix[i][j] = float ( 'inf' ) # The distance of node to # itself will be 0. if i = = j: matrix[i][j] = 0 # Assign the better distance # (if exist) in the matrix # one by one making each node # as our intermediate node for via in range (N): for i in range (N): for j in range (N): matrix[i][j] = min (matrix[i][j], matrix[i][via] + matrix[via][j]) # Replacing infinity to -1, # after the work is done for i in range (N): for j in range (N): if matrix[i][j] = = float ( 'inf' ): matrix[i][j] = - 1 # Driver code if __name__ = = "__main__" : grid = [[ 0 , 1 , 2 ], [ 0 , 3 , 5 ], [ 0 , 4 , 3 ], [ 1 , 0 , 3 ], [ 1 , 5 , 6 ], [ 1 , 2 , 2 ], [ 1 , 3 , 2 ], [ 2 , 5 , 1 ], [ 2 , 3 , 1 ], [ 3 , 4 , 1 ], [ 4 , 3 , 2 ]] V = 6 matrix = [[ - 1 for _ in range (V)] for _ in range (V)] # Creating matrix representation for it in grid: u, v, wt = it[ 0 ], it[ 1 ], it[ 2 ] matrix[u][v] = wt obj = Solution() # Function call obj.shortest_dist(matrix) for row in matrix: for it in row: if it = = - 1 : it = - 1 print (it, end = "\t" ) print () # This code is contributed by Pushpesh raj |
0 2 4 4 3 5 3 0 2 2 3 3 -1 -1 0 1 2 1 -1 -1 -1 0 1 -1 -1 -1 -1 2 0 -1 -1 -1 -1 -1 -1 0
Time complexity: O(N^3)
Auxiliary Space: O(N^2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!