Friday, January 10, 2025
Google search engine
HomeData Modelling & AIAsymmetric Relation on a Set

Asymmetric Relation on a Set

A relation is a subset of the cartesian product of a set with another set. A relation contains ordered pairs of elements of the set it is defined on. To learn more about relations refer to the article on “Relation and their types“.

What is an Asymmetric Relation?

A relation R on a set A is called asymmetric relation if 

∀ a, b ∈ A, if (a, b) ∈ R then (b, a) ∉ R and vice versa, 
where R is a subset of (A x A), i.e. the cartesian product of set A with itself.

This if an ordered pair of elements “a” to “b” (aRb) is present in relation R then an ordered pair of elements “b” to “a” (bRa) should not be present in relation R.

If any such bRa is present for any aRb in R then R is not an asymmetric relation. Also, if any aRa is present in R then R is not an asymmetric relation.

Example:

Consider set A = {a, b}

R = {(a, b), (b, a)} is not asymmetric relation but
R = {(a, b)} is symmetric relation.

Properties of Asymmetric Relation

  1. Empty relation on any set is always asymmetric.
  2. Every asymmetric relation is also irreflexive and anti-symmetric.
  3. Universal relation over a non-empty set is never asymmetric.
  4. A non-empty relation can not be both symmetric and asymmetric.

How to verify Asymmetric Relation?

To verify asymmetric relation follow the below method:

  • Manually check for the existence of every bRa tuple for every aRb tuple in the relation.
  • If any of the tuples exist or (a = b) then the relation is not asymmetric else it is asymmetric.

Follow the below illustration for a better understanding:

Illustration:

Consider set A = { 1, 2, 3, 4 } and relation R = { (1, 2), (1, 3), (2, 3), (3, 4) }

For (1, 2) in set R:
    => The reversed pair (2, 1) is not present in R.
    => This satisfies the condition.

For (1, 3) in set R:
    => The reversed pair (3, 1) is not present in R.
    => This satisfies the condition.

For (2, 3) in set R:
    => The reversed pair (3, 2) is not present in R.
    => This satisfies the condition.

For (3, 4) in set R:
    => The reversed pair (4, 3) is not present in R.
    => This satisfies the condition.

So R is an asymmetric relation.

Below is the code implementation of the idea:

C++




#include <bits/stdc++.h>
using namespace std;
 
class Relation {
public:
    bool checkAsymmetric(set<pair<int, int> > R)
    {
        // Property 1
        if (R.size() == 0) {
            return true;
        }
 
        for (auto i = R.begin(); i != R.end(); i++) {
 
            // Making a mirror tuple
            auto temp = make_pair(i->second, i->first);
 
            if (R.find(temp) != R.end()) {
 
                // If bRa or aRa tuple does exists in
                // relation R
                return false;
            }
        }
 
        // bRa or aRa tuples does not exists for all aRb in
        // relation R
        return true;
    }
};
 
int main()
{
    // Creating relation R
    set<pair<int, int> > R;
 
    // Inserting tuples in relation R
    R.insert(make_pair(1, 2));
    R.insert(make_pair(2, 3));
    R.insert(make_pair(3, 4));
 
    Relation obj;
 
    // R is asymmetric as bRa tuple is not present
    if (obj.checkAsymmetric(R)) {
        cout << "Asymmetric Relation" << endl;
    }
    else {
        cout << "Not a Asymmetric Relation" << endl;
    }
 
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
import java.util.*;
 
class pair {
  int first, second;
  pair(int first, int second)
  {
    this.first = first;
    this.second = second;
  }
}
 
class GFG {
 
  static class Relation {
    boolean checkAsymmetric(Set<pair> R)
    {
      // Property 1
      if (R.size() == 0) {
        return true;
      }
      for (var i : R) {
        // Making a mirror pair
        // Eg : (1, 2) => mirror pair = (2, 1)
        pair temp = new pair(i.second, i.first);
        if (R.contains(temp)) {
          // If bRa or aRa tuple does exists in
          // relation R
          return false;
        }
      }
      // bRa or aRa tuples does not exists for all aRb
      // in relation R
      return true;
    }
  }
 
  public static void main(String[] args)
  {
    // Creating relation R
    Set<pair> R = new HashSet<>();
 
    // Inserting tuples in relation R
    R.add(new pair(1, 2));
    R.add(new pair(2, 3));
    R.add(new pair(3, 4));
 
    Relation obj = new Relation();
 
    // R is asymmetric as bRa tuple is not present
    if (obj.checkAsymmetric(R)) {
      System.out.println("Asymmetric Relation");
    }
    else {
      System.out.println("Not a Asymmetric Relation");
    }
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




class Relation:
    def checkAsymmetric(self, R):
         
        # Property 1
        if len(R) == 0:
            return True
 
        for i in R:
            if (i[1], i[0]) in R:
                 
                # If bRa or aRa tuple does exist in relation R
                return False
         
        # bRa or aRa tuples does not exist for all aRb in relation R
        return True
 
 
# Driver code
if __name__ == '__main__':
 
    # Creating relation R
    R = {(1, 2), (2, 3), (3, 4)}
 
    obj = Relation()
 
    # R is asymmetric as bRa tuple is not present
    if obj.checkAsymmetric(R):
        print("Asymmetric Relation")
    else:
        print("Not a Asymmetric Relation")


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class pair {
  public int first, second;
  public pair(int first, int second)
  {
    this.first = first;
    this.second = second;
  }
}
 
public class GFG {
 
  class Relation {
    public bool checkAsymmetric(HashSet<pair> R)
    {
      // Property 1
      if (R.Count == 0) {
        return true;
      }
      foreach(var i in R)
      {
        // Making a mirror pair
        // Eg : (1, 2) => mirror pair = (2, 1)
        pair temp = new pair(i.second, i.first);
        if (R.Contains(temp)) {
          // If bRa or aRa tuple does exists in
          // relation R
          return false;
        }
      }
      // bRa or aRa tuples does not exists for all aRb
      // in relation R
      return true;
    }
  }
 
  static public void Main()
  {
 
    // Code
    // Creating relation R
    HashSet<pair> R = new HashSet<pair>();
 
    // Inserting tuples in relation R
    R.Add(new pair(1, 2));
    R.Add(new pair(2, 3));
    R.Add(new pair(3, 4));
 
    Relation obj = new Relation();
 
    // R is asymmetric as bRa tuple is not present
    if (obj.checkAsymmetric(R)) {
      Console.WriteLine("Asymmetric Relation");
    }
    else {
      Console.WriteLine("Not a Asymmetric Relation");
    }
  }
}
 
// This code is contributed by lokesh.


Javascript




class Relation {
  constructor() {}
 
  checkAsymmetric(R) {
    // Property 1
    if (R.size === 0) {
      return true;
    }
 
    for (const i of R) {
      // Making a mirror tuple
      const temp = [i[1], i[0]];
 
      if (R.has(temp)) {
        // If bRa or aRa tuple does exists in
        // relation R
        return false;
      }
    }
 
    // bRa or aRa tuples does not exists for all aRb in
    // relation R
    return true;
  }
}
 
function main() {
  // Creating relation R
  const R = new Set();
 
  // Inserting tuples in relation R
  R.add([1, 2]);
  R.add([2, 3]);
  R.add([3, 4]);
 
  const obj = new Relation();
 
  // R is asymmetric as bRa tuple is not present
  if (obj.checkAsymmetric(R)) {
    console.log("Asymmetric Relation");
  } else {
    console.log("Not a Asymmetric Relation");
  }
}
 
main();
 
// This code is contributed by akashish__


Output

Asymmetric Relation

Time Complexity: O(N * log N), Where N is the number of elements in relation R.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments