Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIArea of the Largest Triangle inscribed in a Hexagon

Area of the Largest Triangle inscribed in a Hexagon

Given here is a regular hexagon, of side length a, the task is to find the area of the biggest triangle that can be inscribed within it.
Examples: 
 

Input:  a = 6
Output: area = 46.7654

Input: a = 8
Output: area = 83.1384

 

 

Approach:
 

It is very clear that the biggest triangle that can be inscribed within the hexagon is an equilateral triangle. 
In triangle ACD
following Pythagoras theorem, 
(a/2)^2 + (b/2)^2 = a^2 
b^2/4 = 3a^2/4 
So, b = a?3 
Therefore, area of the triangle, A = ?3(a?3)^2/4= 3?3a^2/4

Below is the implementation of the above approach:
 

C++




// C++ Program to find the biggest triangle
// which can be inscribed within the hexagon
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the triangle
float trianglearea(float a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    float area = (3 * sqrt(3) * pow(a, 2)) / 4;
 
    return area;
}
 
// Driver code
int main()
{
    float a = 6;
    cout << trianglearea(a) << endl;
 
    return 0;
}


Java




// Java Program to find the biggest triangle
// which can be inscribed within the hexagon
 
import java.io.*;
 
class GFG {
     
// Function to find the area
// of the triangle
static double trianglearea(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    double area = (3 * Math.sqrt(3) * Math.pow(a, 2)) / 4;
 
    return area;
}
 
    public static void main (String[] args) {
        double a = 6;
        System.out.println (trianglearea(a));
 
    }
//This Code is contributed by Sachin..
     
}


Python3




# Python3 Program to find the biggest triangle
# which can be inscribed within the hexagon
import math
 
# Function to find the area
# of the triangle
def trianglearea(a):
 
    # side cannot be negative
    if (a < 0):
        return -1;
 
    # area of the triangle
    area = (3 * math.sqrt(3) * math.pow(a, 2)) / 4;
 
    return area;
 
# Driver code
a = 6;
print(trianglearea(a))
 
# This code is contributed
# by Akanksha Rai


C#




// C# Program to find the biggest triangle
// which can be inscribed within the hexagon
 
using System;
 
class GFG {
     
// Function to find the area
// of the triangle
static double trianglearea(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    double area = (3 * Math.Sqrt(3) * Math.Pow(a, 2)) / 4;
 
    return Math.Round(area,4);
}
 
    public static void Main () {
        double a = 6;
        Console.WriteLine(trianglearea(a));
 
    }
        // This code is contributed by Ryuga
 
}


PHP




<?php
// PHP Program to find the biggest triangle
// which can be inscribed within the hexagon
 
// Function to find the area
// of the triangle
function trianglearea($a)
{
 
    // side cannot be negative
    if ($a < 0)
        return -1;
 
    // area of the triangle
    $area = (3 * sqrt(3) *
                 pow($a, 2)) / 4;
 
    return $area;
}
 
// Driver code
$a = 6;
echo trianglearea($a);
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
// javascript Program to find the biggest triangle
// which can be inscribed within the hexagon
 
   
// Function to find the area
// of the triangle
function trianglearea(a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the triangle
    var area = (3 * Math.sqrt(3) * Math.pow(a, 2)) / 4;
 
    return area.toFixed(4);
}
 
var a = 6;
document.write(trianglearea(a));
 
// This code contributed by Princi Singh
 
</script>


Output: 

46.7654

 

Time complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments