Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIArea of the biggest possible rhombus that can be inscribed in a...

Area of the biggest possible rhombus that can be inscribed in a rectangle

Given a rectangle of length l and breadth b, the task is to find the largest rhombus that can be inscribed in the rectangle.
Examples
 

Input : l = 5, b = 4
Output : 10

Input : l = 16, b = 6
Output : 48

 

 

From the figure, we can see, the biggest rhombus that could be inscribed within the rectangle will have its diagonals equal to the length & breadth of the rectangle. 
So, Area of rhombus, A = (l*b)/2
Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest rhombus
// which can be inscribed within the rectangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the biggest rhombus
float rhombusarea(float l, float b)
{
    // the length and breadth cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
int main()
{
    float l = 16, b = 6;
    cout << rhombusarea(l, b) << endl;
    return 0;
}


Java




// Java Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
import java.io.*;
 
class GFG
{
 
// Function to find the area
// of the biggest rhombus
static float rhombusarea(float l,
                         float b)
{
    // the length and breadth
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
public static void main (String[] args)
{
    float l = 16, b = 6;
    System.out.println(rhombusarea(l, b));
}
}
 
// This code is contributed
// by inder_verma


Python3




# Python 3 Program to find the biggest rhombus
# which can be inscribed within the rectangle
 
 
# Function to find the area
# of the biggest rhombus
def rhombusarea(l,b):
    # the length and breadth cannot be negative
    if (l < 0 or b < 0):
        return -1
 
    # area of the rhombus
    return (l * b) / 2
 
# Driver code
if __name__ == '__main__':
    l = 16
    b = 6
    print(rhombusarea(l, b))


C#




// C# Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
using System;
 
class GFG
{
 
// Function to find the area
// of the biggest rhombus
static float rhombusarea(float l,
                        float b)
{
    // the length and breadth
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
public static void Main ()
{
    float l = 16, b = 6;
    Console.WriteLine(rhombusarea(l, b));
}
}
 
// This code is contributed
// by shs


PHP




<?php
// PHP Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
 
// Function to find the area
// of the biggest rhombus
function rhombusarea($l, $b)
{
    // the length and breadth
    // cannot be negative
    if ($l < 0 || $b < 0)
        return -1;
 
    // area of the rhombus
    return ($l * $b) / 2;
}
 
// Driver code
$l = 16; $b = 6;
echo rhombusarea($l, $b) . "\n";
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


Javascript




<script>
 
// javascript Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
 
// Function to find the area
// of the biggest rhombus
function rhombusarea(l,b)
{
    // the length and breadth
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
var l = 16, b = 6;
document.write(rhombusarea(l, b));
 
// This code contributed by Princi Singh
 
</script>


Output: 

48

 

Time complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments