Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIArea of largest Circle that can be inscribed in a SemiCircle

Area of largest Circle that can be inscribed in a SemiCircle

Given a semicircle with radius R, the task is to find the area of the largest circle that can be inscribed in the semicircle.
Examples: 
 

Input: R = 2
Output: 3.14

Input: R = 8
Output: 50.24

 

Approach: Let R be the radius of the semicircle
 

  1. For Largest circle that can be inscribed in this semicircle, the diameter of the circle must be equal to the radius of the semi-circle. 
     
  2. So, if the radius of the semi-circle is R, then the diameter of the largest inscribed circle will be R.
  3. Hence the radius of the inscribed circle must be R/2
  4. Therefore the area of the largest circle will be 
     
Area of circle = pi*Radius2
               = pi*(R/2)2

since the radius of largest circle is R/2
where R is the radius of the semicircle
  1.  

 

Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest circle
// which can be inscribed within the semicircle
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the circle
float circlearea(float R)
{
 
    // Radius cannot be negative
    if (R < 0)
        return -1;
 
    // Area of the largest circle
    float a = 3.14 * R * R / 4;
 
    return a;
}
 
// Driver code
int main()
{
    float R = 2;
    cout << circlearea(R) << endl;
 
    return 0;
}


Java




// Java Program to find the biggest circle
// which can be inscribed within the semicircle
class GFG
{
     
    // Function to find the area
    // of the circle
    static float circlearea(float R)
    {
     
        // Radius cannot be negative
        if (R < 0)
            return -1;
     
        // Area of the largest circle
        float a = (float)((3.14 * R * R) / 4);
     
        return a;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        float R = 2;
        System.out.println(circlearea(R));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 Program to find the biggest circle
# which can be inscribed within the semicircle
 
# Function to find the area
# of the circle
def circlearea(R) :
 
    # Radius cannot be negative
    if (R < 0) :
        return -1;
 
    # Area of the largest circle
    a = (3.14 * R * R) / 4;
 
    return a;
 
# Driver code
if __name__ == "__main__" :
 
    R = 2;
    print(circlearea(R)) ;
     
# This code is contributed by AnkitRai01


C#




// C# Program to find the biggest circle
// which can be inscribed within the semicircle
using System;
 
class GFG
{
     
    // Function to find the area
    // of the circle
    static float circlearea(float R)
    {
     
        // Radius cannot be negative
        if (R < 0)
            return -1;
     
        // Area of the largest circle
        float a = (float)((3.14 * R * R) / 4);
     
        return a;
    }
     
    // Driver code
    public static void Main (string[] args)
    {
        float R = 2;
        Console.WriteLine(circlearea(R));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript Program to find the biggest circle
// which can be inscribed within the semicircle
 
// Function to find the area
// of the circle
function circlearea(R)
{
 
    // Radius cannot be negative
    if (R < 0)
        return -1;
 
    // Area of the largest circle
    var a = 3.14 * R * R / 4;
 
    return a;
}
 
// Driver code
var R = 2;
document.write(circlearea(R));
 
// This code is contributed by rutvik_56.
</script>


Output: 

3.14

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments