Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIArea of largest Circle inscribe in N-sided Regular polygon

Area of largest Circle inscribe in N-sided Regular polygon

Given a regular polygon of N sides with side length a. The task is to find the area of the Circle which inscribed in the polygon. 
Note : This problem is mixed version of This and This 
Examples: 
 

Input: N = 6, a = 4
Output: 37.6801
Explanation:

In this, the polygon have 6 faces 
and as we see in fig.1 we clearly see 
that the angle  x  is 30 degree  
so the radius of circle will be ( a / (2  * tan(30))) 
Therefore, r = a?3/2

Input: N = 8, a = 8
Output: 292.81
Explanation:

In this, the polygon have 8 faces 
and as we see in fig.2 we clearly see 
that the angle  x  is 22.5 degree  
so the radius of circle will be ( a / (2  * tan(22.5))) 
Therefore, r = a/0.828

Approach: In the figure above, we see the polygon can be divided into N equal triangles. Looking into one of the triangles, we see that the whole angle at the center can be divided into = 360/N
So, angle x = 180/n 
Now, tan(x) = (a / 2) * r
So, r = a / ( 2 * tan(x))
So, Area of the Inscribed Circle is, 
 

 A = ?r² = ? * (a / (2 * tan(x))) * (a / (2*tan(x)))

Below is the implementation of the above approach: 
 

C++




// C++ Program to find the area of a circle in
// inscribed in polygon
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of a circle
float InscribedCircleArea(float n, float a)
{
    // Side and side length cannot be negative
    if (a < 0 && n < 0)
        return -1;
 
    // degree converted to radians
    float r = a / (2 * tan((180 / n) * 3.14159 / 180));
 
    // area of circle
    float Area = (3.14) * (r) * (r);
 
    return Area;
}
 
// Driver code
int main()
{
 
    // no.  of sides
    float n = 6;
 
    // side length
    float a = 4;
 
    cout << InscribedCircleArea(n, a) << endl;
 
    return 0;
}


Java




// Java Program to find the area of a circle
// inscribed in a polygon
import java.io.*;
 
class GFG {
 
    // Function to find the area
    // of a regular polygon
    static float InscribedCircleArea(float n, float a)
    {
        // Side and side length cannot be negative
        if (a < 0 && n < 0)
            return -1;
 
        // degree converted to radians
        float r = a / (float)(2 * Math.tan((180 / n) * 3.14159 / 180));
 
        // area of circle
        float Area = (float)(3.14) * (r) * (r);
 
        return Area;
    }
 
    // Driver code
 
    public static void main(String[] args)
    {
 
        // no.  of sides
        float n = 6;
 
        // side length
        float a = 4;
 
        System.out.println(InscribedCircleArea(n, a));
    }
}


Python3




# Python 3 Program to find the area
# of a circle inscribed
# in a polygon
from math import tan
 
# Function to find the area of a
# circle
def InscribedCircleArea(n, a):
    # Side and side length cannot
    # be negative
    if (a < 0 and n < 0):
        return -1
 
    # degree converted to radians
    r = a/(2 * tan((180 / n) * 3.14159 / 180));
 
    # area of circle
    Area = 3.14 * r * r
 
    return Area
 
# Driver code
if __name__ == '__main__':
    a = 4
    n = 6
 
    print('{0:.6}'.format(InscribedCircleArea(n, a)))
 
# This code is contributed by
# Chandan Agrawal


C#




// C# Program to find the area of a circle
// inscribed in a polygon
using System;
 
class GFG
{
 
// Function to find the area
// of a regular polygon
static float InscribedCircleArea(float n, float a)
{
    // Side and side length cannot be negative
    if (a < 0 && n < 0)
        return -1;
 
    // degree converted to radians
    float r = a / (float)(2 * Math.Tan((180 / n) *
                                 3.14159 / 180));
 
    // area of circle
    float Area = (float)(3.14) * (r) * (r);
 
    return Area;
}
 
// Driver code
public static void Main()
{
 
    // no. of sides
    float n = 6;
 
    // side length
    float a = 4;
 
    Console.WriteLine(InscribedCircleArea(n, a));
}
}
 
// This code is contributed by Ryuga


PHP




<?php
// PHP Program to find the area
// of a circle inscribed
// in a polygon
 
// Function to find the area of a
// circle
function InscribedCircleArea($n, $a)
{
    // Side and side length cannot
    // be negative
    if ($a < 0 && $n < 0)
        return -1;
 
    // degree converted to radians
    $r = $a / (2 * tan((180 / $n) * 3.14159 / 180));
 
    // area of circle
    $Area = 3.14 * $r * $r;
 
    return $Area;
}
 
// Driver code
$a = 4;
$n = 6;
echo(InscribedCircleArea($n, $a));
 
// This code contributed by PrinciRaj1992
?>


Javascript




<script>
// Javascript Program to find the area of a circle
// inscribed in a polygon
 
    // Function to find the area
    // of a regular polygon
    function InscribedCircleArea( n ,a)
    {
     
        // Side and side length cannot be negative
        if (a < 0 && n < 0)
            return -1;
 
        // degree converted to radians
        let r = a /  (2 * Math.tan((180 / n) * 3.14159 / 180));
 
        // area of circle
        let Area =  (3.14) * (r) * (r);
        return Area;
    }
 
    // Driver code
 
    // no. of sides
    let n = 6;
 
    // side length
    let a = 4;
 
    document.write(InscribedCircleArea(n, a).toFixed(4));
     
// This code is contributed by 29AjayKumar
</script>


Output: 

37.6801

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments