Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIArea of Equilateral triangle inscribed in a Circle of radius R

Area of Equilateral triangle inscribed in a Circle of radius R

Given an integer R which denotes the radius of a circle, the task is to find the area of an equilateral triangle inscribed in this circle.

Examples: 

Input: R = 4 
Output: 20.784 
Explanation: 
Area of equilateral triangle inscribed in a circle of radius R will be 20.784, whereas side of the triangle will be 6.928

Input: R = 7 
Output: 63.651 
Explanation: 
Area of equilateral triangle inscribed in a circle of radius R will be 63.651, whereas side of the triangle will be 12.124 

Approach: Let the above triangle shown be an equilateral triangle denoted as PQR.  

 

Area of triangle = (1/2) * Base * Height
  • In this case, Base can be PQ, PR or QR and The height of the triangle can be PM. Hence, 
Area of Triangle = (1/2) * QR * PM
  • Now Applying sine law on the triangle ORQ
 RQ         OR
------  = -------
sin 60    sin 30

=> RQ = OR * sin60 / sin30
=> Side of Triangle = OR * sqrt(3)

As it is clearly observed
PM = PO + OM = r + r * sin30 = (3/2) * r
  • Therefore, the Base and height of the required equilateral triangle will be: 
Base = r * sqrt(3) = r * 1.732
Height = (3/2) * r
  • Compute the area of the triangle with the help of the formulae given above.

Below is the implementation of the above approach:  

C++




// C++ implementation to find
// the area of the equilateral triangle
// inscribed in a circle of radius R
#include <iostream>
using namespace std;
 
// Function to find the area of
// equilateral triangle inscribed
// in a circle of radius R
double area(int R) {
      
     // Base and Height of
    // equilateral triangle
    double base = 1.732 * R;
    double height = (1.5) * R;
      
            // Area using Base and Height
    double area = 0.5 * base * height;
    return area;
}
 
// Driver Code
int main()
{
    int R = 7;
    cout<<(area(R));
    return 0;
}
 
// This code is contributed by 29AjayKumar


Java




// Java implementation to find
// the area of the equilateral triangle
// inscribed in a circle of radius R
class GFG
{
    // Function to find the area of
    // equilateral triangle inscribed
    // in a circle of radius R
    static double area(int R) {
         
                // Base and Height of
        // equilateral triangle
        double base = 1.732 * R;
        double height = (1.5) * R;
         
                // Area using Base and Height
        double area = 0.5 * base * height;
        return area;
    }
 
    // Driver code
    public static void main(String[] args) {
        int R = 7;
        System.out.println(area(R));
 
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python 3 implementation to find
# the area of the equilateral triangle
# inscribed in a circle of radius R
 
# Function to find the area of
# equilateral triangle inscribed
# in a circle of radius R
def area(R):
    # Base and Height of
    # equilateral triangle
    base = 1.732 * R
    height = ( 3 / 2 ) * R
     
    # Area using Base and Height
    area = (( 1 / 2 ) * base * height )
    return area
     
# Driver Code
if __name__=='__main__':
    R = 7
    print(area(R))


C#




// C# implementation to find
// the area of the equilateral triangle
// inscribed in a circle of radius R
using System;
 
class GFG
{
    // Function to find the area of
    // equilateral triangle inscribed
    // in a circle of radius R
    static double area(int R)
    {
         
        // Base and Height of
        // equilateral triangle
        double Base = 1.732 * R;
        double height = (1.5) * R;
         
        // Area using Base and Height
        double area = 0.5 * Base * height;
        return area;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int R = 7;
        Console.WriteLine(area(R));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation to find
// the area of the equilateral triangle
// inscribed in a circle of radius R
 
// Function to find the area of
// equilateral triangle inscribed
// in a circle of radius R
function area(R)
{
     
    // Base and Height of
    // equilateral triangle
    var base = 1.732 * R;
    var height = (1.5) * R;
 
    // Area using Base and Height
    var area = 0.5 * base * height;
    return area;
}
 
// Driver code
var R = 7;
 
document.write(area(R));
 
// This code is contributed by todaysgaurav
 
</script>


Output: 

63.651

 

Time complexity : O(1) 
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments