Given three integers A,B and C which denotes length of the three medians of a triangle, the task is to calculate the area of the triangle.
A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.
Examples:
Input: A = 9, B = 12, C = 15
Output: 72.0
Input: A = 39, B = 42, C = 45
Output: 1008.0
Approach:
The area of the triangle can be calculated from the given length of medians using the following equation:
where
Below is the implementation of the above approach:
C++14
// C++14 program to calculate // area of a triangle from the // given lengths of medians #include <bits/stdc++.h> using namespace std; // Function to return the area of // triangle using medians double Area_of_Triangle( int a, int b, int c) { int s = (a + b + c) / 2; int x = s * (s - a); x = x * (s - b); x = x * (s - c); double area = (4 / ( double )3) * sqrt (x); return area; } // Driver Code int main() { int a = 9; int b = 12; int c = 15; // Function call double ans = Area_of_Triangle(a, b, c); // Print the final answer cout << ans; } // This code is contributed by code_hunt |
Java
// Java program to calculate // area of a triangle from the // given lengths of medians class GFG{ // Function to return the area of // triangle using medians static double Area_of_Triangle( int a, int b, int c) { int s = (a + b + c)/ 2 ; int x = s * (s - a); x = x * (s - b); x = x * (s - c); double area = ( 4 / ( double ) 3 ) * Math.sqrt(x); return area; } // Driver Code public static void main(String[] args) { int a = 9 ; int b = 12 ; int c = 15 ; // Function Call double ans = Area_of_Triangle(a, b, c); // Print the final answer System.out.println(ans); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 program to calculate # area of a triangle from the # given lengths of medians import math # Function to return the area of # triangle using medians def Area_of_Triangle(a, b, c): s = (a + b + c) / / 2 x = s * (s - a) x = x * (s - b) x = x * (s - c) area = ( 4 / 3 ) * math.sqrt(x) return area # Driver Code a = 9 b = 12 c = 15 # Function Call ans = Area_of_Triangle(a, b, c) # Print the final answer print ( round (ans, 2 )) |
C#
// C# program to calculate // area of a triangle from the // given lengths of medians using System; class GFG{ // Function to return the area of // triangle using medians static double Area_of_Triangle( int a, int b, int c) { int s = (a + b + c) / 2; int x = s * (s - a); x = x * (s - b); x = x * (s - c); double area = (4 / ( double )3) * Math.Sqrt(x); return area; } // Driver Code public static void Main(String[] args) { int a = 9; int b = 12; int c = 15; // Function call double ans = Area_of_Triangle(a, b, c); // Print the final answer Console.WriteLine(ans); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // javascript program to calculate // area of a triangle from the // given lengths of medians // Function to return the area of // triangle using medians function Area_of_Triangle(a , b , c) { var s = (a + b + c) / 2; var x = s * (s - a); x = x * (s - b); x = x * (s - c); var area = (4 / 3) * Math.sqrt(x); return area; } // Driver Code var a = 9; var b = 12; var c = 15; // Function Call var ans = Area_of_Triangle(a, b, c); // Print the final answer document.write(ans.toFixed(1)); // This code is contributed by Rajput-Ji </script> |
72.0
Time Complexity: O(log x)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!