Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIArea of a Triangle from the given lengths of medians

Area of a Triangle from the given lengths of medians

Given three integers A,B and C which denotes length of the three medians of a triangle, the task is to calculate the area of the triangle.

A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.

Examples:

Input: A = 9, B = 12, C = 15 
Output: 72.0
Input: A = 39, B = 42, C = 45 
Output: 1008.0

Approach: 
The area of the triangle can be calculated from the given length of medians using the following equation:

Area (ABC) = \frac{4}{3} \sqrt{s(s-A)(s-B)(s-C)}
 

where 

s = \frac{a+b+c}{2}
 

Below is the implementation of the above approach:

C++14




// C++14 program to calculate
// area of a triangle from the
// given lengths of medians
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the area of
// triangle using medians
double Area_of_Triangle(int a, int b, int c)
{
    int s = (a + b + c) / 2;
    int x = s * (s - a);
    x = x * (s - b);
    x = x * (s - c);
    double area = (4 / (double)3) * sqrt(x);
 
    return area;
}
 
// Driver Code
int main()
{
    int a = 9;
    int b = 12;
    int c = 15;
     
    // Function call
    double ans = Area_of_Triangle(a, b, c);
     
    // Print the final answer
    cout << ans;
}
 
// This code is contributed by code_hunt


Java




// Java program to calculate
// area of a triangle from the
// given lengths of medians
class GFG{
 
// Function to return the area of
// triangle using medians
static double Area_of_Triangle(int a,
                               int b, int c)
{
    int s = (a + b + c)/2;
    int x = s * (s - a);
    x = x * (s - b);
    x = x * (s - c);
    double area = (4 / (double)3) * Math.sqrt(x);
 
    return area;
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 9;
    int b = 12;
    int c = 15;
     
    // Function Call
    double ans = Area_of_Triangle(a, b, c);
     
    // Print the final answer
    System.out.println(ans);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program to calculate
# area of a triangle from the
# given lengths of medians
import math
 
# Function to return the area of
# triangle using medians
def Area_of_Triangle(a, b, c):
 
    s = (a + b + c)//2
    x = s * (s - a)
    x = x * (s - b)
    x = x * (s - c)
    area = (4 / 3) * math.sqrt(x)
 
    return area
 
# Driver Code
a = 9
b = 12
c = 15
 
# Function Call
ans = Area_of_Triangle(a, b, c)
 
# Print the final answer
print(round(ans, 2))


C#




// C# program to calculate
// area of a triangle from the
// given lengths of medians
using System;
 
class GFG{
 
// Function to return the area of
// triangle using medians
static double Area_of_Triangle(int a,
                               int b, int c)
{
    int s = (a + b + c) / 2;
    int x = s * (s - a);
     
    x = x * (s - b);
    x = x * (s - c);
     
    double area = (4 / (double)3) * Math.Sqrt(x);
 
    return area;
}
 
// Driver Code
public static void Main(String[] args)
{
    int a = 9;
    int b = 12;
    int c = 15;
     
    // Function call
    double ans = Area_of_Triangle(a, b, c);
     
    // Print the final answer
    Console.WriteLine(ans);
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
// javascript program to calculate
// area of a triangle from the
// given lengths of medians
 
    // Function to return the area of
    // triangle using medians
    function Area_of_Triangle(a , b , c) {
        var s = (a + b + c) / 2;
        var x = s * (s - a);
        x = x * (s - b);
        x = x * (s - c);
        var area = (4 / 3) * Math.sqrt(x);
 
        return area;
    }
 
    // Driver Code
     
    var a = 9;
    var b = 12;
    var c = 15;
 
    // Function Call
    var ans = Area_of_Triangle(a, b, c);
 
    // Print the final answer
    document.write(ans.toFixed(1));
 
// This code is contributed by Rajput-Ji
</script>


Output: 

72.0

Time Complexity: O(log x) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments