Friday, September 5, 2025
HomeData Modelling & AIArea of a n-sided regular polygon with given Radius

Area of a n-sided regular polygon with given Radius

Given a regular polygon of N sides with radius(distance from the center to any vertex) R. The task is to find the area of the polygon.
Examples: 
 

Input : r = 9, N = 6
Output : 210.444

Input : r = 8, N = 7
Output : 232.571

 

 

In the figure, we see that the polygon can be divided into N equal triangles.
Looking into one of the triangles, we see that the whole angle at the centre can be divided into = 360/N parts.
So, angle t = 180/N.
Looking into one of the triangles, we see, 
 

h = rcost
a = rsint

We know, 
 

area of the triangle = (base * height)/2 
                     = r2sin(t)cos(t)
                     = r2*sin(2t)/2

So, area of the polygon: 
 

A = n * (area of one triangle) 
  = n*r2*sin(2t)/2 
  = n*r2*sin(360/n)/2

Below is the implementation of the above approach: 
 

C++




// C++ Program to find the area
// of a regular polygon with given radius
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of a regular polygon
float polyarea(float n, float r)
{
    // Side and radius cannot be negative
    if (r < 0 && n < 0)
        return -1;
 
    // Area
    // degree converted to radians
    float A = ((r * r * n) * sin((360 / n) * 3.14159 / 180)) / 2;
 
    return A;
}
 
// Driver code
int main()
{
    float r = 9, n = 6;
 
    cout << polyarea(n, r) << endl;
 
    return 0;
}


Java




// Java Program to find the area
// of a regular polygon with given radius
 
import java.util.*;
class GFG
{
    // Function to find the area
    // of a regular polygon
    static double polyarea(double n, double r)
    {
        // Side and radius cannot be negative
        if (r < 0 && n < 0)
            return -1;
     
        // Area
        // degree converted to radians
        double A = ((r * r * n) * Math.sin((360 / n) * 3.14159 / 180)) / 2;
     
        return A;
    }
     
    // Driver code
    public static void main(String []args)
    {
        float r = 9, n = 6;
     
        System.out.println(polyarea(n, r));
     
         
    }
}
 
// This code is contributed
// By ihritik (Hritik Raj)


Python3




# Python3 Program to find the area
# of a regular polygon with given radius
 
# form math lib import sin function
from math import sin
 
# Function to find the area
# of a regular polygon
def polyarea(n, r) :
     
    # Side and radius cannot be negative
    if (r < 0 and n < 0) :
        return -1
 
    # Area
    # degree converted to radians
    A = (((r * r * n) * sin((360 / n) *
                 3.14159 / 180)) / 2);
 
    return round(A, 3)
 
# Driver code
if __name__ == "__main__" :
 
    r, n = 9, 6
    print(polyarea(n, r))
 
# This code is contributed by Ryuga


C#




// C# Program to find the area
// of a regular polygon with given radius
 
using System;
class GFG
{
    // Function to find the area
    // of a regular polygon
    static double polyarea(double n, double r)
    {
        // Side and radius cannot be negative
        if (r < 0 && n < 0)
            return -1;
     
        // Area
        // degree converted to radians
        double A = ((r * r * n) * Math.Sin((360 / n) * 3.14159 / 180)) / 2;
     
        return A;
    }
     
    // Driver code
    public static void Main()
    {
        float r = 9, n = 6;
     
        Console.WriteLine(polyarea(n, r));
     
         
    }
}
 
// This code is contributed
// By ihritik (Hritik Raj)


PHP




<?php
// PHP Program to find the area of a
// regular polygon with given radius
 
// Function to find the area
// of a regular polygon
function polyarea($n, $r)
{
    // Side and radius cannot be negative
    if ($r < 0 && $n < 0)
        return -1;
 
    // Area
    // degree converted to radians
    $A = (($r * $r * $n) * sin((360 / $n) *
                     3.14159 / 180)) / 2;
 
    return $A;
}
 
// Driver code
$r = 9;
$n = 6;
echo polyarea($n, $r)."\n";
 
// This code is contributed by ita_c
?>


Javascript




<script>
// javascript Program to find the area
// of a regular polygon with given radius
 
// Function to find the area
// of a regular polygon
function polyarea(n , r)
{
    // Side and radius cannot be negative
    if (r < 0 && n < 0)
        return -1;
 
    // Area
    // degree converted to radians
    var A = ((r * r * n) * Math.sin((360 / n) * 3.14159 / 180)) / 2;
 
    return A;
}
 
// Driver code
var r = 9, n = 6;
 
document.write(polyarea(n, r).toFixed(5));
 
 
// This code contributed by Princi Singh
</script>


Output: 

210.444

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32264 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11863 POSTS0 COMMENTS
Shaida Kate Naidoo
6750 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6701 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS