Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIArea of a circle inscribed in a regular hexagon

Area of a circle inscribed in a regular hexagon

Given a regular Hexagon with side length a, the task is to find the area of the circle inscribed in it, given that, the circle is tangent to each of the six sides.
Examples: 
 

Input: a = 4
Output: 37.68

Input: a = 10
Output: 235.5

 

 

Approach
From the figure, it is clear that, we can divide the regular hexagon into 6 identical equilateral triangles. 
We take one triangle OAB, with O as the centre of the hexagon or circle, & AB as one side of the hexagon. 
Let M be mid-point of AB, OM would be the perpendicular bisector of AB, angle AOM = 30 deg
Then in right angled triangle OAM,
 

tanx = tan30 = 1/?3 
So, a/2r = 1/?3 
Therefore, r = a?3/2 
Area of circle, A =?r²=?3a^2/4

Below is the implementation of the approach
 

C++




// C++ Program to find the area of the circle
// which can be inscribed within the hexagon
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the inscribed circle
float circlearea(float a)
{
 
    // the side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the circle
    float A = (3.14 * 3 * pow(a, 2)) / 4;
 
    return A;
}
 
// Driver code
int main()
{
    float a = 4;
    cout << circlearea(a) << endl;
 
    return 0;
}


Java




//Java program to find the
//area of the circle
//which can be inscribed within the hexagon
 
import java.util.*;
 
class solution
{
static double circlearea(double a)
{
 
// the side cannot be negative
    if (a < 0)
    return -1;
 
// area of the circle
    double A = (3.14 * 3 * Math.pow(a,2) ) / 4;
 
    return A;
}
public static void main(String arr[])
{
    double a = 4;
    System.out.println(circlearea(a));
}
}


Python 3




# Python 3 program to find the
# area of the circle
# which can be inscribed within the hexagon
 
# Function to find the area
# of the inscribed circle
def circlearea(a) :
 
    # the side cannot be negative
    if a < 0 :
        return -1
 
    #  area of the circle
    A = (3.14 * 3 * pow(a,2)) / 4
 
    return A
 
 
# Driver code    
if __name__ == "__main__" :
 
    a = 4
    print(circlearea(a))
 
 
# This code is contributed by ANKITRAI1


C#




// C# program to find 
// the area of the circle
// which can be inscribed
// within the hexagon
using System;
 
class GFG
{
static double circlearea(double a)
{
 
    // the side cannot be negative
    if (a < 0)
    return -1;
 
    // area of the circle
    double A = (3.14 * 3 *
                Math.Pow(a, 2)) / 4;
 
    return A;
}
 
// Driver Code
public static void Main()
{
    double a = 4;
    Console.WriteLine(circlearea(a));
}
}
 
// This code is contributed
// by inder_verma


PHP




<?php
// PHP Program to find the area of
// the circle which can be inscribed
// within the hexagon
 
// Function to find the area
// of the inscribed circle
function circlearea($a)
{
 
    // the side cannot be negative
    if ($a < 0)
        return -1;
 
    // area of the circle
    $A = (3.14 * 3 * pow($a, 2)) / 4;
 
    return $A;
}
 
// Driver code
$a = 4;
echo circlearea($a) . "\n";
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


Javascript




<script>
 
// javascript program to find the
//area of the circle
//which can be inscribed within the hexagon
 
function circlearea(a) {
 
    // the side cannot be negative
    if (a < 0)
        return -1;
 
    // area of the circle
    var A = (3.14 * 3 * Math.pow(a, 2)) / 4;
 
    return A;
}
 
var a = 4;
document.write(circlearea(a));
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

37.68

 

Time complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments